63 research outputs found

    Diffusion coefficients and constraints on hadronic inhomogeneities in the early universe

    Full text link
    Hadronic inhomogeneities are formed after the quark hadron phase transition. The nature of the phase transition dictates the nature of the inhomogeneities formed. Recently some scenarios of inhomogeneities have been discussed where the strange quarks are in excess over the up and down quarks. The hadronization of these quarks will give rise to a large density of hyperons and kaons in addition to the protons and neutrons which are formed after the phase transition. These unstable hyperons decay into pions, muons and their respective neutrinos. Hence the plasma during this period consists of neutrons, protons, electrons, muons and neutrinos. Due to the decay of the hyperons, the muon component of the inhomogeneities will be very high. We study the diffusion of neutrons and protons in the presence of a large number of muons immediately after the quark hadron phase transition. We find that the presence of the muons enhances the diffusion coefficient of the neutrons/protons. As the diffusion coefficient is enhanced, the inhomogeneities will decay faster in the regions where the muon density is higher. Hence smaller muon rich inhomogeneities will be completely wiped out. The decay of the hyperons will also generate muon neutrinos. Since the big bang nucleosynthesis provides constraints on the neutrino degeneracies, we revisit the effect of non zero degeneracies on the primordial elements.Comment: 20 pages 7 figures Revised version accepted for publication in European Journal of Physics

    Sustaining supercooled mixed phase via resonant oscillations of the order parameter

    Full text link
    We investigate the dynamics of a first order transition when the order parameter field undergoes resonant oscillations, driven by a periodically varying parameter of the free energy. This parameter could be a background oscillating field as in models of pre-heating after inflation. In the context of condensed matter systems, it could be temperature TT, or pressure, external electric/magnetic field etc. We show that with suitable driving frequency and amplitude, the system remains in a type of mixed phase, without ever completing transition to the stable phase, even when the oscillating parameter of the free energy remains below the corresponding critical value (for example, with oscillating temperature, TT always remains below the critical temperature TcT_c). This phenomenon may have important implications. In cosmology, it will imply prolonged mixed phase in a first order transition due to coupling with background oscillating fields. In condensed matter systems, it will imply that using oscillating temperature (or, more appropriately, pressure waves) one may be able to sustain liquids in a mixed phase indefinitely at low temperatures, without making transition to the frozen phase.Comment: 17 pages, 7 figures, Expanded version with more detail
    • …
    corecore