26 research outputs found

    A neural circuit for navigation inspired by C. elegans Chemotaxis

    Full text link
    We develop an artificial neural circuit for contour tracking and navigation inspired by the chemotaxis of the nematode Caenorhabditis elegans. In order to harness the computational advantages spiking neural networks promise over their non-spiking counterparts, we develop a network comprising 7-spiking neurons with non-plastic synapses which we show is extremely robust in tracking a range of concentrations. Our worm uses information regarding local temporal gradients in sodium chloride concentration to decide the instantaneous path for foraging, exploration and tracking. A key neuron pair in the C. elegans chemotaxis network is the ASEL & ASER neuron pair, which capture the gradient of concentration sensed by the worm in their graded membrane potentials. The primary sensory neurons for our network are a pair of artificial spiking neurons that function as gradient detectors whose design is adapted from a computational model of the ASE neuron pair in C. elegans. Simulations show that our worm is able to detect the set-point with approximately four times higher probability than the optimal memoryless Levy foraging model. We also show that our spiking neural network is much more efficient and noise-resilient while navigating and tracking a contour, as compared to an equivalent non-spiking network. We demonstrate that our model is extremely robust to noise and with slight modifications can be used for other practical applications such as obstacle avoidance. Our network model could also be extended for use in three-dimensional contour tracking or obstacle avoidance

    Generative Compression

    Full text link
    Traditional image and video compression algorithms rely on hand-crafted encoder/decoder pairs (codecs) that lack adaptability and are agnostic to the data being compressed. Here we describe the concept of generative compression, the compression of data using generative models, and suggest that it is a direction worth pursuing to produce more accurate and visually pleasing reconstructions at much deeper compression levels for both image and video data. We also demonstrate that generative compression is orders-of-magnitude more resilient to bit error rates (e.g. from noisy wireless channels) than traditional variable-length coding schemes

    How Does Batch Normalization Help Optimization?

    Full text link
    Batch Normalization (BatchNorm) is a widely adopted technique that enables faster and more stable training of deep neural networks (DNNs). Despite its pervasiveness, the exact reasons for BatchNorm's effectiveness are still poorly understood. The popular belief is that this effectiveness stems from controlling the change of the layers' input distributions during training to reduce the so-called "internal covariate shift". In this work, we demonstrate that such distributional stability of layer inputs has little to do with the success of BatchNorm. Instead, we uncover a more fundamental impact of BatchNorm on the training process: it makes the optimization landscape significantly smoother. This smoothness induces a more predictive and stable behavior of the gradients, allowing for faster training.Comment: In NeurIPS'1

    Data Selection for Language Models via Importance Resampling

    Full text link
    Selecting a suitable pretraining dataset is crucial for both general-domain (e.g., GPT-3) and domain-specific (e.g., Codex) language models (LMs). We formalize this problem as selecting a subset of a large raw unlabeled dataset to match a desired target distribution given unlabeled target samples. Due to the scale and dimensionality of the raw text data, existing methods use simple heuristics or require human experts to manually curate data. Instead, we extend the classic importance resampling approach used in low-dimensions for LM data selection. We propose Data Selection with Importance Resampling (DSIR), an efficient and scalable framework that estimates importance weights in a reduced feature space for tractability and selects data with importance resampling according to these weights. We instantiate the DSIR framework with hashed n-gram features for efficiency, enabling the selection of 100M documents from the full Pile dataset in 4.5 hours. To measure whether hashed n-gram features preserve the aspects of the data that are relevant to the target, we define KL reduction, a data metric that measures the proximity between the selected pretraining data and the target on some feature space. Across 8 data selection methods (including expert selection), KL reduction on hashed n-gram features highly correlates with average downstream accuracy (r=0.82). When selecting data for continued pretraining on a specific domain, DSIR performs comparably to expert curation across 8 target distributions. When pretraining general-domain models (target is Wikipedia and books), DSIR improves over random selection and heuristic filtering baselines by 2-2.5% on the GLUE benchmark. Code is available at https://github.com/p-lambda/dsir.Comment: NeurIPS 202
    corecore