18 research outputs found

    Experimental Evidence of Large Collective Enhancement of Nuclear Level Density and its Significance in Radiative Neutron Capture

    Full text link
    The collective enhancement of nuclear level density and its fade out with excitation energy in deformed 171^{171}Yb nucleus has been inferred through an exclusive measurement of neutron spectra.The statistical model analysis of neutron spectra demonstrated a large collective enhancement factor of 40±\pm3 for the first time, which corroborates with the recent microscopic model predictions but is an anomalous result compared with the measurements in the nearby deformed nuclei. The complete picture of the energy dependent collective enhancement has been obtained by combining with Oslo data below neutron binding energy. The significance of large collective enhancement in radiative neutron capture cross section of astrophysical interest is highlighted.Comment: 12 pages, 5 figure

    Role of the Molar Volume on Estimated Diffusion Coefficients

    No full text
    The role of the molar volume on the estimated diffusion parameters has been speculated for decades. The Matano-Boltzmann method was the first to be developed for the estimation of the variation of the interdiffusion coefficients with composition. However, this could be used only when the molar volume varies ideally or remains constant. Although there are no such systems, this method is still being used to consider the ideal variation. More efficient methods were developed by Sauer-Freise, Den Broeder, and Wagner to tackle this problem. However, there is a lack of research indicating the most efficient method. We have shown that Wagner's method is the most suitable one when the molar volume deviates from the ideal value. Similarly, there are two methods for the estimation of the ratio of intrinsic diffusion coefficients at the Kirkendall marker plane proposed by Heumann and van Loo. The Heumann method, like the Matano-Boltzmann method, is suitable to use only when the molar volume varies more or less ideally or remains constant. In most of the real systems, where molar volume deviates from the ideality, it is safe to use the van Loo method. We have shown that the Heumann method introduces large errors even for a very small deviation of the molar volume from the ideal value. On the other hand, the van Loo method is relatively less sensitive to it. Overall, the estimation of the intrinsic diffusion coefficient is more sensitive than the interdiffusion coefficient

    Diffusion of components via different modes during growth of the A15-V(3)Gaphase

    No full text
    Based on an interdiffusion study using an incremental diffusion couple in the V-Ga binary system, we have shown that V diffuses via the lattice, whereas Ga does so via grain boundaries, for the growth of the V3Ga phase. We estimate the contributions from the two different mechanisms, which are usually difficult to delineate in an interdiffusion study. Available tracer diffusion studies and the atomic arrangement in the crystal structure have been considered for a discussion on the diffusion mechanisms

    Estimation of intrinsic diffusion coefficients in a pseudo-binary diffusion couple

    No full text
    Major drawback of studying diffusion in multi-component systems is the lack of suitable techniques to estimate the diffusion parameters. In this study, a generalized treatment to determine the intrinsic diffusion coefficients in multi-component systems is developed utilizing the concept of a pseudo-binary approach. This is explained with the help of experimentally developed diffusion profiles in the Cu(Sn, Ga) and Cu(Sn, Si) solid solutions. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Vacancy wind effect on interdiffusion in a dilute Cu(Sn) solid solution

    No full text
    A study has been conducted on a Cu(Sn) solid solution to examine the role of the vacancy wind effect on interdiffusion. First, the interdiffusion and the intrinsic diffusion coefficients are calculated. The trend of the interdiffusion coefficients is explained with the help of the driving force. Following this, the tracer diffusion coefficients of the species are calculated with and without consideration of the vacancy wind effect. We found that the role of the vacancy wind is negligible on the minor element in a dilute solid solution, which is the faster diffusing species in this system and controls the interdiffusion process. However, consideration of this effect is important to understand the diffusion rate of the major element, which is the slower diffusing species in this system

    Effect of Ti concentration on the growth of Nb3Sn between solid Nb(Ti) and liquid Sn

    No full text
    The change in the growth rate of the Nb3Sn product phase because of Ti addition is studied for solid Nb(Ti)-liquid Sn interactions. The growth rate increased from no Ti to 1 at.% and 2 at.% of Ti in Nb, and the activation energy decreased from 221 kJ/mol to 146 kJ/mol. Based on the estimated values, the role of grain boundary and lattice diffusion is discussed in light of the possibility of increased grain boundary area and point defects such as antisites and vacancies

    Effect of Ga content in Cu(Ga) on the growth of V3Ga following bronze technique

    No full text
    Diffusion controlled growth rate of V3Ga in the Cu(Ga)/V system changes dramatically because of a small change in Ga content in Cu(Ga). One atomic percent increase from 15 to 16 leads to more than double the product phase layer thickness and a decrease in activation energy from 255 to 142 kJ/mol. Kirkendall marker experiment indicates that V3Ga grows because of diffusion of Ga. Role of different factors influencing the diffusion rate of Ga and high growth rate of V3Ga are discussed. (C) 2015 Elsevier Ltd. All rights reserved

    Role of Zr on growth kinetics and microstructural evolution of the superconductor V3Ga by the bronze technique

    No full text
    The influence of Zr on the growth of V3Ga is studied by a diffusion-couple technique mimicking the bronze method for superconductor production. Systematic quantitative evaluation on critical-current-density-dependent metallurgical parameters is addressed. A mixture of V3Ga and Zr-containing phases develops at the interdiffusion zone. Smaller grains on Zr addition cause higher growth kinetics owing to grain-boundary diffusion of Ga. The grains are oriented randomly irrespective of Zr addition. Refined microstructure, second-phase, and higher growth kinetics suggest a beneficial role of Zr for the better functioning of the superconductor

    Interdiffusion in the Fe-Pt System

    No full text
    Diffusion-couple experiments are conducted in the Fe-Pt system. The phase boundary compositions of the phases measured in this study are found to be different than the compositions published previously. In the gamma-FePt solid solution, the interdiffusion coefficient increases with the Pt content up to 25 at. pct Pt. Fe is the faster diffusing species in this phase. The trend in the interdiffusion coefficient is explained with the help of calculated driving force for diffusion. To reduce errors, the average interdiffusion coefficients are calculated in the FePt and FePt3 compounds
    corecore