2 research outputs found

    Development of commercial-off-the-shelf imaging payload for cloud coverage monitoring

    Get PDF
    Locana Bhumi payload is one of the selected payloads in The 2nd GRSS Student Grand Challenge, and it will be installed in a 3U Cube Satellite. Its main mission is to monitor cloud coverage in several regions such as Indonesia, United Arab Emirates, Oman, and Australia. Clouds have a role in climate change, they are able to reflect infrared light and cool the surface of the earth that is covered by clouds. At the same time, clouds are also able to trap heat, as a result, they warm the earth. By monitoring cloud coverage over the selected areas, it is expected that we will be able to study how cloud coverage could affect the climate system on the earth. In order to monitor the cloud coverage, the Locana payload will capture cloud images by using a small serial camera that is equipped with a low voltage ¼-inch 5-megapixel OV5642 image sensor. This camera also employs a 4.14 mm focal length fixed-infrared-cut-filter lens. This camera is able to capture 500 x 375 km2 of the area from about 575 km above the earth's surface, with that area observation, the cloud coverage is expected to be easier to observe. In terms of image storage, this payload is integrated with a 1 Gigabit memory. This memory is also used for saving the payload housekeeping data. To prevent the payload from overcurrent situations, the payload system is integrated with an Over Current Protection module. Moreover, an alloy-based enclosure has been designed to protect the component from outer space radiation. The material used for the enclosure is aluminum alloy 7075. The payload has a compact dimension, which fits in 0.5U of Cube Satellite size. Currently, the development of this payload has reached the Critical Design Review stage and it is expected to be ready in Quartal-1 2022

    Wheeled Robot Drive Design with Rocker-Bogie System for Searching for Earthquake Victims

    No full text
    Potensi bencana yang cukup tinggi di Indonesia membuat pemerintah selalu mendukung segala program untuk menanggulangi bencana tersebut. Salah satau kendala yang dihadapi dalam mitigasi bencana adalah mengevakuasi korban sedini mungkin, agar tidak muncul korban berikutnya. Susahnya medan membuat petugas tidak mudah menemukan korban yang tertimpa puing bangunan dan sejenisnya. Sehingga diperlukan robot yang mampu membantu petugas dalam menemukan korban yang tertimpa oleh puing-puing bangunan. Batasan robot yang harus direalisasikan adalah robot harus mampu melewati segala medan dengan standar komunikasi yang memungkinkan untuk diterapkan pada daerah bencana. Dalam paper ini dibahas bagaimana merancang mekanisme robot beroda dengan mekanisme kaki-kaki rocker-bogie yang mampu melewati segala medan. Mekanisme rocker bogie lebih unggul dibanding dengan sistem rantai, terlebih pada medan yang berupa tangga dengan kemiringan diatas 300. Metode dynamic window approach juga diimplementasikan untuk memudahkan robot menuju ke titik tujuan atau titik awal secara mandiri. Dari beberapa pengujian didapatkan hasil robot mampu melewati objek berupa gundukan pasir dengan ketinggian hinggan 40 cm dengan kemiringan diatas 300. Sedangkan jangauan yang mampu dilewati mampu mencapa 7 meter dengan kemiringan kurang dari 100. Dari pengujian juga didapatkan hasil dari 8 jenis peletakan obstacle yang berbeda, robot berhasil kembali ke titik awal dengan eror rata-rata sebesar 1.0513
    corecore