1 research outputs found
Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde
The integration of artificial intelligence (AI) and machine learning (ML) in medicine represents a rapidly growing field, promising significant advances in diagnostic and treatment processes. Given this scenario, this integrative review seeks to consolidate and critically analyze the available scientific evidence on the application of these innovative technologies in medical practice. The methodology adopted for this integrative review involved a comprehensive search of the main databases, such as PubMed, Scielo and ScienceDirect, using the relevant descriptors, such as "Artificial Intelligence", "Machine Learning", "Clinical Diagnosis", "Machine Learning" and "Deep Learning". The careful selection of references included relevant studies that address the application of AI and ML in various domains of medicine, with a special focus on the references indicated in Vancouver in this abstract. The results of this review reveal a wide range of successful applications of AI and AM in medical diagnosis and treatment. Studies such as Wang et al. (2019) highlight the progress and challenges of using deep learning in medicine, while work by Erickson et al. (2017) highlights the effectiveness of ML in medical imaging, contributing to advances in clinical practice. Ethical approaches and future impacts on the actions of healthcare professionals, as discussed by Ahuja (2019) and Farhud and Zokaei (2021), emerge as crucial points in the integration of these technologies. The conclusion of this integrative review reinforces the significant transformation provided by the integration of AI and AM in medicine, offering faster and more accurate diagnoses, as well as outlining intrinsic ethical challenges. Patient privacy and ethical considerations become critical factors in this scenario. This comprehensive analysis highlights the continued need for responsible research and development, promoting advances that optimize clinical efficacy and ensure the trust of healthcare professionals and patients in the face of these transformative innovations.A integração de inteligência artificial (IA) e aprendizado de máquina (AM) na medicina representa um campo em rápido crescimento, prometendo avanços significativos nos processos de diagnóstico e tratamento. Diante desse cenário, a presente revisão integrativa busca consolidar e analisar criticamente as evidências científicas disponíveis sobre a aplicação dessas tecnologias inovadoras na prática médica. A metodologia adotada para esta revisão integrativa envolveu uma busca abrangente nas principais bases de dados, como PubMed, Scielo e Scopus, utilizando os descritores pertinentes, tais como "Inteligência Artificial", "Aprendizado de Máquina", "Diagnóstico Clínico", "Machine Learning" e "Deep Learning". A seleção criteriosa das referências incluiu estudos relevantes que abordam a aplicação de IA e AM em diversos domínios da medicina, com foco especial nas referências indicadas em Vancouver neste resumo. Os resultados desta revisão revelam uma ampla gama de aplicações bem-sucedidas de IA e AM em diagnósticos e tratamentos médicos. Estudos como o de Wang et al. (2019) destacam os progressos e desafios do uso de deep learning na medicina, enquanto trabalhos de Erickson et al. (2017) evidenciam a eficácia do AM em imagens médicas, contribuindo para avanços na prática clínica. Abordagens éticas e impactos futuros na atuação dos profissionais de saúde, conforme discutido por Ahuja (2019) e Farhud e Zokaei (2021), emergem como pontos cruciais na integração dessas tecnologias. A conclusão desta revisão integrativa reforça a transformação significativa proporcionada pela integração de IA e AM na medicina, oferecendo diagnósticos mais rápidos e precisos, bem como delineando desafios éticos intrínsecos. A privacidade do paciente e as considerações éticas tornam-se fatores críticos nesse cenário. Esta análise abrangente destaca a necessidade contínua de pesquisa e desenvolvimento responsável, promovendo avanços que otimizem a eficácia clínica e garantam a confiança dos profissionais de saúde e dos pacientes diante dessas inovações transformadoras