42,951 research outputs found
Ultracold dipolar gases - a challenge for experiments and theory
We present a review of recent results concerning the physics of ultracold
trapped dipolar gases. In particular, we discuss the Bose-Einstein condensation
for dipolar Bose gases and the BCS transition for dipolar Fermi gases. In both
cases we stress the dominant role of the trap geometry in determining the
properties of the system. We present also results concerning bosonic dipolar
gases in optical lattices and the possibility of obtaining variety of different
quantum phases in such case. Finally, we analyze various possible routes
towards achieving ultracold dipolar gases.Comment: This paper is based on the lecture given by M. Lewenstein at the
Nobel Symposium ''Coherence and Condensation in Quantum Systems'',
Gothesburg, 4-7.12.200
Field-induced phase transitions of repulsive spin-1 bosons in optical lattices
We study the phase diagram of repulsively interacting spin-1 bosons in
optical lattices at unit filling, showing that an externally induced quadratic
Zeeman effect may lead to a rich physics characterized by various phases and
phase transitions. We find that the main properties of the system may be
described by an effective field model, which provides the precise location of
the phase boundaries for any dimension, being in excellent agreement with our
numerical calculations for one-dimensional systems. Our work provides a
quantitative guide for the experimental analysis of various types of
field-induced quantum phase transitions in spin-1 lattice bosons. These
transitions, which are precluded in spin-1/2 systems, may be realized using an
externally modified quadratic Zeeman coupling, similar to recent experiments
with spinor condensates in the continuum.Comment: 4 pages, 2 figure
Quantized form factor shift in the presence of free electron laser radiation
In electron scattering, the target form factors contribute significantly to
the diffraction pattern and carry information on the target electromagnetic
charge distribution. Here we show that the presence of electromagnetic
radiation, as intense as currently available in Free Electron Lasers, shifts
the dependence of the target form factors by a quantity that depends on the
number of photons absorbed or emitted by the electron as well as on the
parameters of the electromagnetic radiation. As example, we show the impact of
intense ultraviolet and soft X-ray radiation on elastic electron scattering by
Ne-like Argon ion and by Xenon atom. We find that the shift brought by the
radiation to the form factor is in the order of some percent. Our results may
open up a new avenue to explore matter with the assistance of laser
Tuning the metamagnetism of an antiferromagnetic metal
We describe a `disordered local moment' (DLM) first-principles electronic structure theory which demonstrates that tricritical metamagnetism can arise in an antiferromagnetic metal due to the dependence of local moment interactions on the magnetisation state. Itinerant electrons can therefore play a defining role in metamagnetism in the absence of large magnetic anisotropy. Our model is used to accurately predict the temperature dependence of the metamagnetic critical fields in CoMnSi-based alloys, explaining the sensitivity of metamagnetism to Mn-Mn separations and compositional variations found previously. We thus provide a
finite-temperature framework for modelling and predicting new metamagnets of interest in applications such as magnetic cooling
Metallicities of M Dwarf Planet Hosts from Spectral Synthesis
We present the first spectroscopic metallicities of three M dwarfs with known
or candidate planetary mass companions. We have analyzed high resolution, high
signal-to-noise spectra of these stars which we obtained at McDonald
Observatory. Our analysis technique is based on spectral synthesis of atomic
and molecular features using recently revised cool-star model atmospheres and
spectrum synthesis code. The technique has been shown to yield results
consistent with the analyses of solar-type stars and allows measurements of M
dwarf [M/H] values to 0.12 dex precision. From our analysis, we find [M/H] =
-0.12, -0.32, and -0.33 for GJ 876, GJ 436, and GJ 581 respectively. These
three M dwarf planet hosts have sub-solar metallicities, a surprising departure
from the trend observed in FGK-type stars. This study is the first part of our
ongoing work to determine the metallicities of the M dwarfs included in the
McDonald Observatory planet search program.Comment: 13 pages, 2 figures, accepted for publication in ApJ
Abrupt Changes in the Dynamics of Quantum Disentanglement
Entanglement evolution in high dimensional bipartite systems under
dissipation is studied. Discontinuities for the time derivative of the lower
bound of entanglement of formation is found depending on the initial conditions
for entangled states. This abrupt changes along the evolution appears as
precursors of entanglement sudden death.Comment: 4 pages and 6 figures, submitted for publicatio
Primary beam effects of radio astronomy antennas -- II. Modelling the MeerKAT L-band beam
After a decade of design and construction, South Africa's SKA-MID precursor
MeerKAT has begun its science operations. To make full use of the widefield
capability of the array, it is imperative that we have an accurate model of the
primary beam of its antennas. We have taken available L-band full-polarization
'astro-holographic' observations of three antennas and a generic
electromagnetic simulation and created sparse representations of the beams
using principal components and Zernike polynomials. The spectral behaviour of
the spatial coefficients has been modelled using discrete cosine transform. We
have provided the Zernike-based model over a diameter of 10 deg averaged over
the beams of three antennas in an associated software tool (EIDOS) that can be
useful in direction-dependent calibration and imaging. The model is more
accurate for the diagonal elements of the beam Jones matrix and at lower
frequencies. As we get more accurate beam measurements and simulations in the
future, especially for the cross-polarization patterns, our pipeline can be
used to create more accurate sparse representations of MeerKAT beams.Comment: 16 pages, 18 figures. This is a pre-copyedited, author-produced PDF
of an article accepted for publication in MNRAS following peer review. The
version of record [K. M. B. Asad et al., 2021] is available online at:
https://doi.org/10.1093/mnras/stab10
Dynamically Slow Processes in Supercooled Water Confined Between Hydrophobic Plates
We study the dynamics of water confined between hydrophobic flat surfaces at
low temperature. At different pressures, we observe different behaviors that we
understand in terms of the hydrogen bonds dynamics. At high pressure, the
formation of the open structure of the hydrogen bond network is inhibited and
the surfaces can be rapidly dehydrated by decreasing the temperature. At lower
pressure the rapid ordering of the hydrogen bonds generates heterogeneities
that are responsible for strong non-exponential behavior of the correlation
function, but with no strong increase of the correlation time. At very low
pressures, the gradual formation of the hydrogen bond network is responsible
for the large increase of the correlation time and, eventually, the dynamical
arrest of the system and of the dehydration process.Comment: 14 pages, 3 figure
- …