40,646 research outputs found

    K X-Ray Energies and Transition Probabilities for He-, Li- and Be-like Praseodymium ions

    Full text link
    Theoretical transition energies and probabilities for He-, Li- and Be-like Praseodymium ions are calculated in the framework of the multi-configuration Dirac-Fock method (MCDF), including QED corrections. These calculated values are compared to recent experimental data obtained in the Livermore SuperEBIT electron beam ion trap facility

    On Lorentz violation in e ⁣ ⁣+ ⁣e+ ⁣ ⁣μ ⁣ ⁣+ ⁣μ+e^{-}\!\!+\!e^{+}\!\rightarrow\!\mu^{-}\!\!+\!\mu^{+} scattering at finite temperature

    Full text link
    Small violation of Lorentz and CPT symmetries may emerge in models unifying gravity with other forces of nature. An extension of the standard model with all possible terms that violate Lorentz and CPT symmetries are included. Here a CPT-even non-minimal coupling term is added to the covariant derivative. This leads to a new interaction term that breaks the Lorentz symmetry. Our main objective is to calculate the cross section for the e ⁣ ⁣+ ⁣e+ ⁣ ⁣μ ⁣ ⁣+ ⁣μ+e^{-}\!\!+\!e^{+}\!\rightarrow\!\mu^{-}\!\!+\!\mu^{+} scattering in order to investigate any violation of Lorentz and/or CPT symmetry at finite temperature. Thermo Field Dynamics formalism is used to consider finite temperature effects.Comment: 12 pages, 1 figure, accepted for publication in PL

    The entropy of the noncommutative acoustic black hole based on generalized uncertainty principle

    Get PDF
    In this paper we investigate statistical entropy of a 3-dimensional rotating acoustic black hole based on generalized uncertainty principle. In our results we obtain an area entropy and a correction term associated with the noncommutative acoustic black hole when λ\lambda introduced in the generalized uncertainty principle takes a specific value. However, in this method, it is not needed to introduce the ultraviolet cut-off and divergences are eliminated. Moreover, the small mass approximation is not necessary in the original brick-wall model.Comment: 9 pages, no figures; version to appear in PLB. arXiv admin note: substantial text overlap with arXiv:1210.773

    Coupling vortex dynamics with collective excitations in Bose-Einstein Condensates

    Full text link
    Here we analyze the collective excitations as well as the expansion of a trapped Bose-Einstein condensate with a vortex line at its center. To this end, we propose a variational method where the variational parameters have to be carefully chosen in order to produce reliable results. Our variational calculations agree with numerical simulations of the Gross-Pitaevskii equation. The system considered here turns out to exhibit four collective modes of which only three can be observed at a time depending of the trap anisotropy. We also demonstrate that these collective modes can be excited using well established experimental methods such as modulation of the s-wave scattering length

    Optimal Trajectories for Near-Earth-Objects Using Solar Electric Propulsion (SEP) and Gravity Assisted Maneuver

    Get PDF
    The future interplanetary missions will probably use the conventional chemical rockets to leave the sphere of influence of the Earth, and solar electric propulsion (SEP) to accomplish the other maneuvers of the mission. In this work the optimization of interplanetary missions using solar electric propulsion and Gravity Assisted Maneuver to reduce the costs of the mission, is considered. The high specific impulse of electric propulsion makes a Gravity Assisted Maneuver 1 year after departure convenient. Missions for several Near Earth Asteroids will be considered. The analysis suggests criteria for the definition of initial solutions demanded for the process of optimization of trajectories. Trajectories for the asteroid 2002TC70 are analyzed. Direct trajectories, trajectories with 1 gravity assisted from the Earth and with 2 gravity assisted from the Earth and either Mars are present. An indirect optimization method will be used in the simulations

    Antiresonance and interaction-induced localization in spin and qubit chains with defects

    Full text link
    We study a spin chain with an anisotropic XXZ coupling in an external field. Such a chain models several proposed types of a quantum computer. The chain contains a defect with a different on-site energy. The interaction between excitations is shown to lead to two-excitation states localized next to the defect. In a resonant situation scattering of excitations on each other might cause decay of an excitation localized on the defect. We find that destructive quantum interference suppresses this decay. Numerical results confirm the analytical predictions.Comment: Updated versio
    corecore