2 research outputs found

    The Complexity of Helly-B1B_{1} EPG Graph Recognition

    Full text link
    Golumbic, Lipshteyn, and Stern defined in 2009 the class of EPG graphs, the intersection graph class of edge paths on a grid. An EPG graph GG is a graph that admits a representation where its vertices correspond to paths in a grid QQ, such that two vertices of GG are adjacent if and only if their corresponding paths in QQ have a common edge. If the paths in the representation have at most kk bends, we say that it is a BkB_k-EPG representation. A collection CC of sets satisfies the Helly property when every sub-collection of CC that is pairwise intersecting has at least one common element. In this paper, we show that given a graph GG and an integer kk, the problem of determining whether GG admits a BkB_k-EPG representation whose edge-intersections of paths satisfy the Helly property, so-called Helly-BkB_k-EPG representation, is in NP, for every kk bounded by a polynomial function of ∣V(G)∣|V(G)|. Moreover, we show that the problem of recognizing Helly-B1B_1-EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs

    The Complexity of Helly-B1B_{1} EPG Graph Recognition

    No full text
    Golumbic, Lipshteyn, and Stern defined in 2009 the class of EPG graphs, the intersection graph class of edge paths on a grid. An EPG graph GG is a graph that admits a representation where its vertices correspond to paths in a grid QQ, such that two vertices of GG are adjacent if and only if their corresponding paths in QQ have a common edge. If the paths in the representation have at most kk bends, we say that it is a BkB_k-EPG representation. A collection CC of sets satisfies the Helly property when every sub-collection of CC that is pairwise intersecting has at least one common element. In this paper, we show that given a graph GG and an integer kk, the problem of determining whether GG admits a BkB_k-EPG representation whose edge-intersections of paths satisfy the Helly property, so-called Helly-BkB_k-EPG representation, is in NP, for every kk bounded by a polynomial function of ∣V(G)∣|V(G)|. Moreover, we show that the problem of recognizing Helly-B1B_1-EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs
    corecore