44,085 research outputs found

    Shot Noise in Magnetic Tunnel Junctions: Evidence for Sequential Tunneling

    Full text link
    We report the experimental observation of sub-Poissonian shot noise in single magnetic tunnel junctions, indicating the importance of tunneling via impurity levels inside the tunnel barrier. For junctions with weak zero-bias anomaly in conductance, the Fano factor (normalized shot noise) depends on the magnetic configuration being enhanced for antiparallel alignment of the ferromagnetic electrodes. We propose a model of sequential tunneling through nonmagnetic and paramagnetic impurity levels inside the tunnel barrier to qualitatively explain the observations.Comment: 5 pages, 5 figure

    Emergence of Hierarchy on a Network of Complementary Agents

    Full text link
    Complementarity is one of the main features underlying the interactions in biological and biochemical systems. Inspired by those systems we propose a model for the dynamical evolution of a system composed by agents that interact due to their complementary attributes rather than their similarities. Each agent is represented by a bit-string and has an activity associated to it; the coupling among complementary peers depends on their activity. The connectivity of the system changes in time respecting the constraint of complementarity. We observe the formation of a network of active agents whose stability depends on the rate at which activity diffuses in the system. The model exhibits a non-equilibrium phase transition between the ordered phase, where a stable network is generated, and a disordered phase characterized by the absence of correlation among the agents. The ordered phase exhibits multi-modal distributions of connectivity and activity, indicating a hierarchy of interaction among different populations characterized by different degrees of activity. This model may be used to study the hierarchy observed in social organizations as well as in business and other networks.Comment: 13 pages, 4 figures, submitte

    Equivalence between the Lovelock-Cartan action and a constrained gauge theory

    Full text link
    We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1,3)SO(1,3) group with an additional BRST trivial part. The model is originally composed by a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant while the gauge field is identified with the spin-connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed.Comment: 17 pages. No figures. Final version accepted for publication at the EPJ
    corecore