58,854 research outputs found
Gravitational waves in the generalized Chaplygin gas model
The consequences of taking the generalized Chaplygin gas as the dark energy
constituent of the Universe on the gravitational waves are studied and the
spectrum obtained from this model, for the flat case, is analyzed. Besides its
importance for the study of the primordial Universe, the gravitational waves
represent an additional perspective (besides the CMB temperature and
polarization anisotropies) to evaluate the consistence of the different dark
energy models and establish better constraints to their parameters. The
analysis presented here takes this fact into consideration to open one more
perspective of verification of the generalized Chapligin gas model
applicability. Nine particular cases are compared: one where no dark energy is
present; two that simulate the -CDM model; two where the gas acts like
the traditional Chaplygin gas; and four where the dark energy is the
generalized Chaplygin gas. The different spectra permit to distinguish the
-CDM and the Chaplygin gas scenarios.Comment: Latex file, 9 pages, 11 figures eps forma
Simple equation of state for hard disks on the hyperbolic plane
A simple equation of state for hard disks on the hyperbolic plane is
proposed. It yields the exact second virial coefficient and contains a pole at
the highest possible packing. A comparison with another very recent theoretical
proposal and simulation data is presented.Comment: 3 pages, 1 figur
On the radial distribution function of a hard-sphere fluid
Two related approaches, one fairly recent [A. Trokhymchuk et al., J. Chem.
Phys. 123, 024501 (2005)] and the other one introduced fifteen years ago [S. B.
Yuste and A. Santos, Phys. Rev. A 43, 5418 (1991)], for the derivation of
analytical forms of the radial distribution function of a fluid of hard spheres
are compared. While they share similar starting philosophy, the first one
involves the determination of eleven parameters while the second is a simple
extension of the solution of the Percus-Yevick equation. It is found that the
{second} approach has a better global accuracy and the further asset of
counting already with a successful generalization to mixtures of hard spheres
and other related systems.Comment: 3 pages, 1 figure; v2: slightly shortened, figure changed, to be
published in JC
Pair correlation function of short-ranged square-well fluids
We have performed extensive Monte Carlo simulations in the canonical (NVT)
ensemble of the pair correlation function for square-well fluids with well
widths ranging from 0.1 to 1.0, in units of the diameter
of the particles. For each one of these widths, several densities and
temperatures in the ranges and
, where is the
critical temperature, have been considered. The simulation data are used to
examine the performance of two analytical theories in predicting the structure
of these fluids: the perturbation theory proposed by Tang and Lu [Y. Tang and
B. C.-Y. Lu, J. Chem. Phys. {\bf 100}, 3079, 6665 (1994)] and the
non-perturbative model proposed by two of us [S. B. Yuste and A. Santos, J.
Chem. Phys. {\bf 101}, 2355 (1994)]. It is observed that both theories
complement each other, as the latter theory works well for short ranges and/or
moderate densities, while the former theory does for long ranges and high
densities.Comment: 10 pages, 10 figure
- …