58,854 research outputs found

    Gravitational waves in the generalized Chaplygin gas model

    Full text link
    The consequences of taking the generalized Chaplygin gas as the dark energy constituent of the Universe on the gravitational waves are studied and the spectrum obtained from this model, for the flat case, is analyzed. Besides its importance for the study of the primordial Universe, the gravitational waves represent an additional perspective (besides the CMB temperature and polarization anisotropies) to evaluate the consistence of the different dark energy models and establish better constraints to their parameters. The analysis presented here takes this fact into consideration to open one more perspective of verification of the generalized Chapligin gas model applicability. Nine particular cases are compared: one where no dark energy is present; two that simulate the Λ\Lambda-CDM model; two where the gas acts like the traditional Chaplygin gas; and four where the dark energy is the generalized Chaplygin gas. The different spectra permit to distinguish the Λ\Lambda-CDM and the Chaplygin gas scenarios.Comment: Latex file, 9 pages, 11 figures eps forma

    Simple equation of state for hard disks on the hyperbolic plane

    Full text link
    A simple equation of state for hard disks on the hyperbolic plane is proposed. It yields the exact second virial coefficient and contains a pole at the highest possible packing. A comparison with another very recent theoretical proposal and simulation data is presented.Comment: 3 pages, 1 figur

    On the radial distribution function of a hard-sphere fluid

    Full text link
    Two related approaches, one fairly recent [A. Trokhymchuk et al., J. Chem. Phys. 123, 024501 (2005)] and the other one introduced fifteen years ago [S. B. Yuste and A. Santos, Phys. Rev. A 43, 5418 (1991)], for the derivation of analytical forms of the radial distribution function of a fluid of hard spheres are compared. While they share similar starting philosophy, the first one involves the determination of eleven parameters while the second is a simple extension of the solution of the Percus-Yevick equation. It is found that the {second} approach has a better global accuracy and the further asset of counting already with a successful generalization to mixtures of hard spheres and other related systems.Comment: 3 pages, 1 figure; v2: slightly shortened, figure changed, to be published in JC

    Pair correlation function of short-ranged square-well fluids

    Full text link
    We have performed extensive Monte Carlo simulations in the canonical (NVT) ensemble of the pair correlation function for square-well fluids with well widths λ1\lambda-1 ranging from 0.1 to 1.0, in units of the diameter σ\sigma of the particles. For each one of these widths, several densities ρ\rho and temperatures TT in the ranges 0.1ρσ30.80.1\leq\rho\sigma^3\leq 0.8 and Tc(λ)T3Tc(λ)T_c(\lambda)\lesssim T\lesssim 3T_c(\lambda), where Tc(λ)T_c(\lambda) is the critical temperature, have been considered. The simulation data are used to examine the performance of two analytical theories in predicting the structure of these fluids: the perturbation theory proposed by Tang and Lu [Y. Tang and B. C.-Y. Lu, J. Chem. Phys. {\bf 100}, 3079, 6665 (1994)] and the non-perturbative model proposed by two of us [S. B. Yuste and A. Santos, J. Chem. Phys. {\bf 101}, 2355 (1994)]. It is observed that both theories complement each other, as the latter theory works well for short ranges and/or moderate densities, while the former theory does for long ranges and high densities.Comment: 10 pages, 10 figure
    corecore