12,793 research outputs found

    Sonine approximation for collisional moments of granular gases of inelastic rough spheres

    Full text link
    We consider a dilute granular gas of hard spheres colliding inelastically with coefficients of normal and tangential restitution α\alpha and β\beta, respectively. The basic quantities characterizing the distribution function f(v,ω)f(\mathbf{v},\bm{\omega}) of linear (v\mathbf{v}) and angular (ω\bm{\omega}) velocities are the second-degree moments defining the translational (TtrT^\text{tr}) and rotational (TrotT^\text{rot}) temperatures. The deviation of ff from the Maxwellian distribution parameterized by TtrT^\text{tr} and TrotT^\text{rot} can be measured by the cumulants associated with the fourth-degree velocity moments. The main objective of this paper is the evaluation of the collisional rates of change of these second- and fourth-degree moments by means of a Sonine approximation. The results are subsequently applied to the computation of the temperature ratio Trot/TtrT^\text{rot}/T^\text{tr} and the cumulants of two paradigmatic states: the homogeneous cooling state and the homogeneous steady state driven by a white-noise stochastic thermostat. It is found in both cases that the Maxwellian approximation for the temperature ratio does not deviate much from the Sonine prediction. On the other hand, non-Maxwellian properties measured by the cumulants cannot be ignored, especially in the homogeneous cooling state for medium and small roughness. In that state, moreover, the cumulant directly related to the translational velocity differs in the quasi-smooth limit β1\beta\to -1 from that of pure smooth spheres (β=1\beta=-1). This singular behavior is directly related to the unsteady character of the homogeneous cooling state and thus it is absent in the stochastic thermostat case.Comment: 14 pages, 8 figures; v2: some parts rewritten, new references added; published in a special topic decicated to Carlo Cercignan

    Continuous Quantum Error Correction Through Local Operations

    Full text link
    We propose local strategies to protect global quantum information. The protocols, which are quantum error correcting codes for dissipative systems, are based on environment measurements, direct feedback control and simple encoding of the logical qubits into physical qutrits whose decaying transitions are indistinguishable and equally probable. The simple addition of one extra level in the description of the subsystems allows for local actions to fully and deterministically protect global resources, such as entanglement. We present codes for both quantum jump and quantum state diffusion measurement strategies and test them against several sources of inefficiency. The use of qutrits in information protocols suggests further characterization of qutrit-qutrit disentanglement dynamics, which we also give together with simple local environment measurement schemes able to prevent distillability sudden death and even enhance entanglement in situations in which our feedback error correction is not possible.Comment: Accepted for publication in Phys. Rev.

    Observing different quantum trajectories in cavity QED

    Get PDF
    The experimental observation of quantum jumps is an example of single open quantum systems that, when monitored, evolve in terms of stochastic trajectories conditioned on measurements results. Here we present a proposal that allows the experimental observation of a much larger class of quantum trajectories in cavity QED systems. In particular, our scheme allows for the monitoring of engineered thermal baths that are crucial for recent proposals for probing entanglement decay and also for entanglement protection. The scheme relies on the interaction of a three-level atom and a cavity mode that interchangeably play the roles of system and probe. If the atom is detected the evolution of the cavity fields follows quantum trajectories and vice-versa.Comment: 5 pages, 2 figure
    corecore