4 research outputs found
Value of thrombus CT Characteristics in Patients with Acute Ischemic Stroke
BACKGROUND AND PURPOSE: Thrombus CT characteristics might be useful for patient selection for intra-arterial treatment. Our objective was to study the association of thrombus CT characteristics with outcome and treatment effect in patients with acute ischemic stroke. MATERIALS AND METHODS: We included 199 patients for whom thin-section NCCT and CTA within 30 minutes from each other were available in the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute ischemic stroke in the Netherlands (MR CLEAN) study. We assessed the following thrombus characteristics: location, distance from ICA terminus to thrombus, length, volume, absolute and relative density
Added value of multiphase CTA imaging for thrombus perviousness assessment
Purpose: Thrombus perviousness has been associated with favorable functional outcome in acute ischemic stroke (AIS) patients. Measuring thrombus perviousness on CTA may be suboptimal due to potential delay in contrast agent arrival in occluded arteries at the moment of imaging. Dynamic sequences acquired over time can potentially overcome this issue. We investigate if dynamic CTA has added value in assessing thrombus perviousness. Methods: Prospectively collected image data of AIS patients with proven occlusion of the anterior or posterior circulation with thin-slice multi-phase CTA (MCTA) and non-contrast CT were co-registered (n = 221). Thrombus attenuation increase (TAI; a perviousness measure) was measured for the arterial, venous, and delayed phase of the MCTA and time-invariant CTAs (TiCTA). Associations with favorable clinical outcome (90-day mRS ≤ 2) were assessed using univariate and multivariable regressions and calculating areas under receiver operating curves (AUC). Results: TAI determined from the arterial phase CTA was superior in the association with favorable outcome with OR = 1.21 per 10 HU increase (95%CI 1.04–1.41, AUC 0.62, p = 0.014) compared to any other phase (venous 1.14(95%CI 1.01–1.30, AUC 0.58, p = 0.033), delayed 1.046(95%CI 0.919–1.19, AUC 0.53, p = 0.50)), and TiCTA (1.15(95%CI 1.02–1.30, AUC 0.60, p = 0.022). In the multivariable model, only TAI on arterial phase was
Automated entire thrombus density measurements for robust and comprehensive thrombus characterization in patients with acute ischemic stroke
Background and Purpose: In acute ischemic stroke (AIS) management, CT-based thrombus density has been associated with treatment success. However, currently used thrombus measurements are prone to inter-observer variability and oversimplify the heterogeneous thrombus composition. Our aim was first to introduce an automated method to assess the entire thrombus density and then to compare the measured entire thrombus density with respect to current standard manual measurements. Materials and Method: In 135 AIS patients, the density distribution of the entire thrombus was determined. Density distributions were described usingmedians, interquartile ranges (IQR), kurtosis, and skewedness. Differences between themedian of entire thrombusmeasurements and commonly applied manualmeasurements using 3 regions of interest were determined using linear regression. Results: Density distributions varied considerably with medians ranging from 20.0 to 62.8 HU and IQRs ranging from 9.3 to 55.8 HU. The average median of the thrombus density distributions (43.5 ± 10.2 HU) was lower than the manual assessment (49.6 ± 8.0 HU) (p<0.05). The difference between manual measurements and median density of entire thrombus decreased with increasing density (r = 0.64; p<0.05), revealing relatively higher manual measurements for low density thrombi such that manual density measurement tend overestimates the real thrombus density. Conclusions: Automatic measurements of the full thrombus expose a wide variety of thrombi density distribution, which is not grasped with currently used manual measurement. Furthermore, d