15,567 research outputs found

    Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    Get PDF
    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales

    Hot corrosion of S-57, 1 cobalt-base alloy

    Get PDF
    A cobalt base alloy, S-57, was hot corrosion tested in Mach 0.3 burner rig combustion gases at maximum alloy temperatures of 900 and 1000 C. Various salt concentrations were injected into the burner: 0.5, 2, 5, and 10 ppm synthetic sea salt and 4 ppm sodium sulfate (Na2SO4). S-57 underwent accelerated corrosion only under the most severe test conditions, for example, 4 ppm Na2SO4 at 900 C. The process of the accelerated corrosion was primarily sulfidation

    Determination of convective diffusion heat/mass transfer rates to burner rig test targets comparable in size to cross-stream jet diameter

    Get PDF
    Two sets of experiments have been performed to be able to predict the convective diffusion heat/mass transfer rates to a cylindrical target whose height and diameter are comparable to, but less than, the diameter of the circular cross-stream jet, thereby simulating the same geometric configuration as a typical burner rig test specimen located in the cross-stream of the combustor exit nozzle. The first set exploits the naphthalene sublimation technique to determine the heat/mass transfer coefficient under isothermal conditions for various flow rates (Reynolds numbers). The second set, conducted at various combustion temperatures and Reynolds numbers, utilized the temperature variation along the surface of the above-mentioned target under steady-state conditions to estimate the effect of cooling (dilution) due to the entrainment of stagnant room temperature air. The experimental information obtained is used to predict high temperature, high velocity corrosive salt vapor deposition rates in burner rigs on collectors that are geometrically the same. The agreement with preliminary data obtained from Na2SO4 vapor deposition experiments is found to be excellent

    Hot corrosion resistance of nickel-chromium-aluminum alloys

    Get PDF
    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified

    Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    Get PDF
    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration

    Spray combustion under oscillatory pressure conditions

    Get PDF
    The performance and stability of liquid rocket engines is often argued to be significantly impacted by atomization and droplet vaporization processes. In particular, combustion instability phenomena may result from the interactions between the oscillating pressure field present in the rocket combustor and the fuel and oxidizer injection process. Few studies have been conducted to examine the effects of oscillating pressure fields on spray formation and its evolution under rocket engine conditions. The pressure study is intended to address the need for such studies. In particular, two potentially important phenomena are addressed in the present effort. The first involves the enhancement of the atomization process for a liquid jet subjected to an oscillating pressure field of known frequency and amplitude. The objective of this part of the study is to examine the coupling between the pressure field and or the resulting periodically perturbed velocity field on the breakup of the liquid jet. In particular, transverse mode oscillations are of interest since such modes are considered of primary importance in combustion instability phenomena. The second aspect of the project involves the effects of an oscillating pressure on droplet coagulation and secondary atomization. The objective of this study is to examine the conditions under which phenomena following the atomization process are affected by perturbations to the pressure or velocity fields. Both coagulation and represent a coupling mechanism between the pressure field and the energy release process in rocket combustors. It is precisely this coupling which drives combustion instability phenomena. Consequently, the present effort is intended to provide the fundamental insights needed to evaluate these processes as important mechanisms in liquid rocket instability phenomena

    Replaceable blade turbine and stationary specimen corrosion testing facility

    Get PDF
    A facility was constructed to provide relatively low cost testing of hot section turbine blade and vane materials under hot corrosion conditions more akin to service environments. The facility consists of a small combustor whose pressurized gas flow can be directed to either a test section consisting of three small cascaded specimens or to a partial admittance single-stage axial flow turbine. The turbine rotor contains 28 replaceable turbine blades. The combustion gases resulting from the burning of Jet A-l fuel can be seeded with measured amounts of alkali salts. This facility is described here along with preliminary corrosion test results obtained during the final checkout of the facility

    Cryogenic combustion laboratory

    Get PDF
    The objective is to establish a major experimental laboratory for studying fundamental processes such as mixing and combustion under liquid rocket engine conditions. The capability of this laboratory will include operation using a variety of fuel and oxidizer systems including liquid oxygen and liquid hydrocarbons. In addition to providing the proper facilities for supplying and controlling these fuels and oxidizers, a specific effort is being made to provide a state-of-the-art diagnostic capability for combustion measurements. In particular, optical and laser-based techniques are being emphasized for measurements of species, velocities, and spray characteristics

    Hall coefficient of tantalum carbide as function of carbon content

    Get PDF
    Hall coefficient of tantalum carbide as function of carbon conten
    corecore