33 research outputs found
Proliferation Index: A Continuous Model to Predict Prognosis in Patients with Tumours of the Ewing's Sarcoma Family
The prognostic value of proliferation index (PI) and apoptotic index (AI), caspase-8, -9 and -10 expression have been investigated in primary Ewing's sarcoma family of tumours (ESFT). Proliferating cells, detected by immunohistochemistry for Ki-67, were identified in 91% (91/100) of tumours with a median PI of 14 (range 0â87). Apoptotic cells, identified using the TUNEL assay, were detected in 96% (76/79) of ESFT; the median AI was 3 (range 0â33). Caspase-8 protein expression was negative (0) in 14% (11/79), low (1) in 33% (26/79), medium (2) in 38% (30/79) and high (3) in 15% (12/79) of tumours, caspase-9 expression was low (1) in 66% (39/59) and high (3) in 34% (20/59), and caspase-10 protein was low (1) in 37% (23/62) and negative (0) in 63% (39/62) of primary ESFT. There was no apparent relationship between caspase-8, -9 and -10 expression, PI and AI. PI was predictive of relapse-free survival (RFS; pâ=â0.011) and overall survival (OS; pâ=â<0.001) in a continuous model, whereas AI did not predict outcome. Patients with tumours expressing low levels of caspase-9 protein had a trend towards a worse RFS than patients with tumours expressing higher levels of caspase-9 protein (pâ=â0.054, log rank test), although expression of caspases-8, -9 and/or -10 did not significantly predict RFS or OS. In a multivariate analysis model that included tumour site, tumour volume, the presence of metastatic disease at diagnosis, PI and AI, PI independently predicts OS (pâ=â0.003). Consistent with previous publications, patients with pelvic tumours had a significantly worse OS than patients with tumours at other sites (pâ=â0.028); patients with a pelvic tumour and a PIâ„20 had a 6 fold-increased risk of death. These studies advocate the evaluation of PI in a risk model of outcome for patients with ESFT
Studies of electron transport and isochoric heating and their applicability to fast ignition
Experimental measurements of electron transport and isochoric heating in 100 J, 1 ps laser irradiation of solid Al targets are presented. Modeling with a hybrid PIC code is compared with the data and good agreement is obtained using a heuristic model for the electron injection. The relevance for fast ignition is discussed