11 research outputs found

    Effects of Cisplatin in Neuroblastoma Rat Cells: Damage to Cellular Organelles

    Get PDF
    Cisplatin (cisPt) is a chemotherapy agent used as a treatment for several types of cancer. The main cytotoxic effect of cisplatin is generally accepted to be DNA damage. Recently, the mechanism by which cisPt generates the cascade of events involved in the apoptotic process has been demonstrated. In particular it has been shown that some organelles are cisPt target and are involved in cell death. This paper aims to describe the morphological and functional changes of the Golgi apparatus and lysosomes during apoptosis induced in neuronal rat cells (B50) by cisplatin. The results obtained show that the cellular organelles are the target of cisPt, so their damage can induce cell death

    Autofluorescence of liver tissue and bile: Organ functionality monitoring during ischemia and reoxygenation

    No full text
    Abstract BACKGROUND AND OBJECTIVE: Autofluorescence (AF) based optical biopsy of liver tissue is a powerful approach for the real-time diagnosis of its functionality. Since increasing attention is given to the bile production and composition to monitor the liver metabolic engagement in surgery and transplantation, we have investigated the bile AF properties as a potential, additional diagnostic parameter. STUDY DESIGN/MATERIALS AND METHODS: Spectrofluorometric analysis has been performed in real time on a rat liver model of warm ischemia and reperfusion-60 minutes partial portal vein and hepatic artery clamping and subsequent restoration of blood circulation-in comparison with sham operated rats. The AF spectra have been recorded through a single fiber optic probe (366 nm excitation) from both liver tissue and bile, collected from the cannulated bile duct, and analyzed by means of curve fitting procedures. Bile composition has been also analyzed through biochemical assays of bilirubin, total bile acids (TBA) and proteins. RESULTS: Both liver and bile AF signal amplitude and spectral shape undergo changes during induction of ischemia and subsequent reperfusion. The liver tissue response is mainly ascribable to changes in NAD(P)H and flavins and their redox state, largely dependent on oxygen supply, and to the decrease of both vitamin A and fatty acid AF contributions. During comparable times, sham operated rat livers undergo smaller alterations in AF spectral shape, indicating a continuous, slight increase in the oxidized state. Bile AF emission shows a region in the 510-600 nm range ascribable to bilirubin, and resulting from the contribution of two bands, centered at about 515-523 and 570 nm, consistently with its bichromophore nature. Variations in the balance between these two bands depend on the influence of microenvironment on bilirubin intramolecular interchromophore energy transfer efficiency and are likely indicating alteration in a bile composition. This event is supported also by changes observed in the 400-500 nm emission region, ascribable to other bile components. CONCLUSIONS: In parallel with the intratissue AF properties, mainly reflecting redox metabolic activities, the bile AF analysis can provide additional information to assess alterations and recovery in the balance of liver metabolic activities

    Nutritional Composition and Bioactivity of <i>Salicornia europaea</i> L. Plants Grown in Monoculture or Intercropped with Tomato Plants in Salt-Affected Soils

    No full text
    The increasing salinization of agricultural soils urges us to find alternative and sustainable farming systems in order to allow the exploitation of areas that are otherwise becoming less suitable for conventional crops. Thanks to their adaptation to extreme saline conditions, halophytes are promising plants for resilient farming systems, such as intercropping with glycophytes, to ameliorate their productivity in saline soils. This research aimed to evaluate whether the nutritional profile and the content of some health-promoting compounds of the edible portion of Salicornia europaea were influenced by its cultivation in consociation with tomato plants. Moreover, the antioxidant, antibacterial, and anti-inflammatory properties of S. europaea were studied to characterize its bioactivity. The farming system did not influence the concentration of nutrients and bioactive compounds, except for flavonoids. The antimicrobial and anti-inflammatory properties of Salicornia extract suggested the importance of this halophyte for animal and human health

    [Pt(O,O'-acac)(γ-acac)(DMS)] versus cisplatin: apoptotic effects in B50 neuroblastoma cells.

    No full text
    Cisplatin is one of the most active chemotherapeutic agents used in the treatment of childhood and adult malignancies. Cisplatin induces cell death through different pathways. Despite its effectiveness, the continued clinical use of cisplatin is limited by onset of severe side effects (nephrotoxicity, ototoxicity and neurotoxicity) and drug resistance. Therefore, one of the main experimental oncology purpose is related to the search for new platinum-based drugs to create different types of adducts or more specific and effective subcellular targets. Thus, [Pt(O,O'-acac)(γ-acac)(DMS)], which reacts preferentially with protein thiols or thioether, was synthesized. In our research, different approaches were used to compare cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] effects in B50 rat neuroblastoma cells. Our results, using immunocytochemical, cytometric and morphological techniques, showed that these compounds exert a cytostatic action and activate apoptosis with different pathways. Long-term effects demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] exerts cytotoxic effects in neuronal B50 cell line not inducing drug resistance. Analysis was performed both to compare the ability of these platinum compounds to induce cell death and to investigate the intracellular mechanisms at the basis of their cytotoxicity

    [Pt(O,O'-acac)(γ-acac)(DMS)] versus cisplatin: apoptotic effects in B50 neuroblastoma cells

    No full text
    Cisplatin is one of the most active chemotherapeutic agents used in the treatment of childhood and adult malignancies. Cisplatin induces cell death through different pathways. Despite its effectiveness, the continued clinical use of cisplatin is limited by onset of severe side effects (nephrotoxicity, ototoxicity and neurotoxicity) and drug resistance. Therefore, one of the main experimental oncology purpose is related to the search for new platinum-based drugs to create different types of adducts or more specific and effective subcellular targets. Thus, [Pt(O,O'-acac)(γ-acac)(DMS)], which reacts preferentially with protein thiols or thioether, was synthesized. In our research, different approaches were used to compare cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] effects in B50 rat neuroblastoma cells. Our results, using immunocytochemical, cytometric and morphological techniques, showed that these compounds exert a cytostatic action and activate apoptosis with different pathways. Long-term effects demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] exerts cytotoxic effects in neuronal B50 cell line not inducing drug resistance. Analysis was performed both to compare the ability of these platinum compounds to induce cell death and to investigate the intracellular mechanisms at the basis of their cytotoxicity
    corecore