984 research outputs found
Heavy electrons: Electron droplets generated by photogalvanic and pyroelectric effects
Electron clusters, X-rays and nanosecond radio-frequency pulses are produced
by 100 mW continuous-wave laser illuminating ferroelectric crystal of LiNbO_3.
A long-living stable electron droplet with the size of about 100 mcm has freely
moved with the velocity 0.5 cm/s in the air near the surface of the crystal
experiencing the Earth gravitational field. The microscopic model of cluster
stability, which is based on submicroscopic mechanics developed in the real
physical space, is suggested. The role of a restraining force plays the inerton
field, a substructure of the particles' matter waves, which a solitary one can
elastically withstand the Coulomb repulsion of electrons. It is shown that
electrons in the droplet are heavy electrons whose mass at least 1 million of
times exceeds the rest mass of free electron. Application for X-ray imaging and
lithography is discussed.Comment: 15 p., 3 fig
Invariant variational principle for Hamiltonian mechanics
It is shown that the action for Hamiltonian equations of motion can be
brought into invariant symplectic form. In other words, it can be formulated
directly in terms of the symplectic structure without any need to
choose some 1-form , such that , which is not unique
and does not even generally exist in a global sense.Comment: final version; to appear in J.Phys.A; 17 pages, 2 figure
Further insights on predictors of environmental tobacco smoke exposure during the pediatric age
Background: The smoking ban in public places has reduced Environmental Tobacco Smoke (ETS) exposure for non-smokers, but despite this, domestic environments still remain places at high risk of exposure, and, today, about 40% of children worldwide are exposed to ETS at home. The aims of the study are to investigate the contribution of several factors on ETS exposure among a group of Italian children and to evaluate the changes in smoking precautions adopted at home when the smoker is the mother, the father, or both parents, respectively. Methods: A cross-sectional study was performed on a sample of 519 Italian schoolchildren. Information was collected via a questionnaire. Results: 41.4% of the participants lived with at least one smoker. Almost half of the children exposed to ETS lived with one or more smokers who do not observe any home smoking ban. Lower maternal or paternal educational levels significantly increase the risk of ETS exposure at home and the “worst case” is represented by both parents who smoke. Conclusions: More effective preventive interventions are needed to protect children from ETS exposure. Some interventions should be specifically dedicated to smokers with a low educational level and to mothers that smoke
Nonlocal, noncommutative picture in quantum mechanics and distinguished canonical maps
Classical nonlinear canonical (Poisson) maps have a distinguished role in
quantum mechanics. They act unitarily on the quantum phase space and generate
-independent quantum canonical maps. It is shown that such maps act in
the noncommutative phase space as dictated by the classical covariance. A
crucial observation made is that under the classical covariance the local
quantum mechanical picture can become nonlocal in the Hilbert space. This
nonlocal picture is made equivalent by the Weyl map to a noncommutative picture
in the phase space formulation of the theory. The connection between the
entanglement and nonlocality of the representation is explored and specific
examples of the generation of entanglement are provided by using such concepts
as the generalized Bell states. That the results have direct application in
generating vacuum soliton configurations in the recently popular scalar field
theories of noncommutative coordinates is also demonstrated.Comment: 14 pages, one figur
Longitudinal Analysis of Quality of Life, Clinical, Radiographic, Echocardiographic, and Laboratory Variables in Dogs with Preclinical Myxomatous Mitral Valve Disease Receiving Pimobendan or Placebo: The EPIC Study
Background: Changes in clinical variables associated with the administration of pimobendan to dogs with preclinical myxomatous mitral valve disease (MMVD) and cardiomegaly have not been described.
Objectives: To investigate the effect of pimobendan on clinical variables and the relationship between a change in heart size and the time to congestive heart failure (CHF) or cardiac-related death (CRD) in dogs with MMVD and cardiomegaly. To determine whether pimobendan-treated dogs differ from dogs receiving placebo at onset of CHF.
Animals: Three hundred and fifty-four dogs with MMVD and cardiomegaly.
Materials and Methods: Prospective, blinded study with dogs randomized (ratio 1:1) to pimobendan (0.4-0.6 mg/kg/d) or placebo. Clinical, laboratory, and heart-size variables in both groups were measured and compared at different time points (day 35 and onset of CHF) and over the study duration. Relationships between short-term changes in echocardiographic variables and time to CHF or CRD were explored.
Results: At day 35, heart size had reduced in the pimobendan group:median change in (Delta) LVIDDN -0.06 (IQR:-0.15 to + 0.02), P < 0.0001, and LA:Ao -0.08 (IQR:-0.23 to + 0.03), P < 0.0001. Reduction in heart size was associated with increased time to CHF or CRD. Hazard ratio for a 0.1 increase in Delta LVIDDN was 1.26, P = 0.0003. Hazard ratio for a 0.1 increase in Delta LA:Ao was 1.14, P = 0.0002. At onset of CHF, groups were similar.
Conclusions and Clinical Importance: Pimobendan treatment reduces heart size. Reduced heart size is associated with improved outcome. At the onset of CHF, dogs treated with pimobendan were indistinguishable from those receiving placebo
The Inverse Variational Problem for Autoparallels
We study the problem of the existence of a local quantum scalar field theory
in a general affine metric space that in the semiclassical approximation would
lead to the autoparallel motion of wave packets, thus providing a deviation of
the spinless particle trajectory from the geodesics in the presence of torsion.
The problem is shown to be equivalent to the inverse problem of the calculus of
variations for the autoparallel motion with additional conditions that the
action (if it exists) has to be invariant under time reparametrizations and
general coordinate transformations, while depending analytically on the torsion
tensor. The problem is proved to have no solution for a generic torsion in
four-dimensional spacetime. A solution exists only if the contracted torsion
tensor is a gradient of a scalar field. The corresponding field theory
describes coupling of matter to the dilaton field.Comment: 13 pages, plain Latex, no figure
Two Mathematically Equivalent Versions of Maxwell's Equations
This paper is a review of the canonical proper-time approach to relativistic
mechanics and classical electrodynamics. The purpose is to provide a physically
complete classical background for a new approach to relativistic quantum
theory. Here, we first show that there are two versions of Maxwell's equations.
The new version fixes the clock of the field source for all inertial observers.
However now, the (natural definition of the effective) speed of light is no
longer an invariant for all observers, but depends on the motion of the source.
This approach allows us to account for radiation reaction without the
Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any
assumptions about the structure of the source. The theory provides a new
invariance group which, in general, is a nonlinear and nonlocal representation
of the Lorentz group. This approach also provides a natural (and unique)
definition of simultaneity for all observers. The corresponding particle theory
is independent of particle number, noninvariant under time reversal (arrow of
time), compatible with quantum mechanics and has a corresponding positive
definite canonical Hamiltonian associated with the clock of the source.
We also provide a brief review of our work on the foundational aspects of the
corresponding relativistic quantum theory. Here, we show that the standard
square-root and the Dirac equations are actually two distinct
spin- particle equations.Comment: Appeared: Foundations of Physic
Raising awareness of non-hodgkin lymphoma in HIV-infected adolescents: Report of 2 cases in the HAART era
Human immunodeficiency virus (HIV) chronically infected patients are at increased risk of developing non-Hodgkin lymphoma compared with the general population. Highly active antiretroviral therapy has had a dramatic effect on the natural history of HIV infection, reducing the incidence of acquired immunodeficiency syndrome-related non-Hodgkin lymphoma and improving overall survival. However, problems related to adherence to treatment, frequently experienced during adolescence, may increase the risk of acquired immunodeficiency syndrome-related cancers. Optimizing highly active antiretroviral therapy and monitoring noncompliant patients with persisting HIV replication should be considered by physicians who take care of these patients. We herein report 2 cases of relapsed/progressive Burkitt lymphoma in HIV vertically infected adolescents
Analytic Controllability of Time-Dependent Quantum Control Systems
The question of controllability is investigated for a quantum control system
in which the Hamiltonian operator components carry explicit time dependence
which is not under the control of an external agent. We consider the general
situation in which the state moves in an infinite-dimensional Hilbert space, a
drift term is present, and the operators driving the state evolution may be
unbounded. However, considerations are restricted by the assumption that there
exists an analytic domain, dense in the state space, on which solutions of the
controlled Schrodinger equation may be expressed globally in exponential form.
The issue of controllability then naturally focuses on the ability to steer the
quantum state on a finite-dimensional submanifold of the unit sphere in Hilbert
space -- and thus on analytic controllability. A relatively straightforward
strategy allows the extension of Lie-algebraic conditions for strong analytic
controllability derived earlier for the simpler, time-independent system in
which the drift Hamiltonian and the interaction Hamiltonia have no intrinsic
time dependence. Enlarging the state space by one dimension corresponding to
the time variable, we construct an augmented control system that can be treated
as time-independent. Methods developed by Kunita can then be implemented to
establish controllability conditions for the one-dimension-reduced system
defined by the original time-dependent Schrodinger control problem. The
applicability of the resulting theorem is illustrated with selected examples.Comment: 13 page
- …
