9 research outputs found

    Expression and localization of the AT1 and AT2 angiotensin II receptors and α1A and α1D adrenergic receptors in aorta of hypertensive and diabetic rats

    No full text
    Hypertension and diabetes are multifactorial diseases that frequently coexist and exacerbate each another. During the development of diabetes, the impairment of noradrenergic and renin-angiotensin systems has been reported in the response mediated by α1-AR and AT1 receptors. Although their participation in the development of cardiovascular complications is still controversial, some studies have found increased or diminished response to the vasoconstrictive effect of noradrenaline or angiotensin II in a time-dependent manner of diabetes. Thus, the aim of this work was to investigate the possible changes in the expression or localization of α1-AR (α1A and α1D) and angiotensin II receptors (AT1 and AT2) in aorta of rats after 4 weeks of the onset of diabetes. In order to be able to examine the expression of these receptors, immunofluorescence procedure was performed in tunica intima and tunica media of histological sections of aorta. Fluorescence was detected by a confocal microscopy. Our results showed that the receptors are expressed in both tunics, where adrenergic receptors have a higher density in tunica intima and tunica media of SHR compared with WKY; meanwhile, the expression of angiotensin II receptors is not modified in both groups of rats. On the other hand, the results showed that diabetes produced an increase or a decrease in the expression of receptors that is not associated to a specific type of receptor, vascular region, or strain of rat. In conclusion, diabetes and hypertension modify the expression of the receptors in tunica intima and tunica media of aorta in a different way

    Glycine Effect on the Expression Profile of Orphan Receptors GPR21, GPR26, GPR39, GPR82 and GPR6 in a Model of Inflammation in 3T3-L1 Cells

    No full text
    Background: Chronic or low-grade inflammation is a process where various immune cells are recruited from the periphery into adipose tissue. This event gives rise to localised inflammation, in addition to having a close interaction with cardiometabolic pathologies where the mediation of orphan receptors is observed. The aim of this study was to analyse the participation of the orphan receptors GPR21, GPR39, GPR82 and GPR6 in a chronic inflammatory process in 3T3-L1 cells. The 3T3-L1 cells were stimulated with TNF-α (5 ng/mL) for 60 min as an inflammatory model. Gene expression was measured by RT-qPCR. Results: We showed that the inflammatory stimulus of TNF-α in adipocytes decreased the expression of the orphan receptors GPR21, GPR26, GPR39, GPR82 and GPR6, which are related to low-grade inflammation. Conclusions: Our results suggest that GPR21 and GPR82 are modulated by glycine, it shows a possible protective role in the presence of an inflammatory environment in adipocytes, and they could be a therapeutic target to decrease the inflammation in some diseases related to low-grade inflammation such as diabetes, obesity and metabolic syndrome

    Effect of Supplementation with Omega-3 Polyunsaturated Fatty Acids on Metabolic Modulators in Skeletal Muscle of Rats with an Obesogenic High-Fat Diet

    No full text
    Previous studies provided evidence of the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA) on the cardiovascular system and inflammation. However, its possible effect on skeletal muscle is unknown. This study aimed to evaluate whether ω-3 PUFA reverses the dysregulation of metabolic modulators in the skeletal muscle of rats on a high-fat obesogenic diet. For this purpose, an animal model was developed using male Wistar rats with a high-fat diet (HFD) and subsequently supplemented with ω-3 PUFA. Insulin resistance was assessed, and gene and protein expression of metabolism modulators in skeletal muscle was also calculated using PCR-RT and Western blot. Our results confirmed that in HFD rats, zoometric parameters and insulin resistance were increased compared to SD rats. Furthermore, we demonstrate reduced gene and protein expression of peroxisome proliferator-activated receptors (PPARs) and insulin signaling molecules. After ω-3 PUFA supplementation, we observed that glucose (24.34%), triglycerides (35.78%), and HOMA-IR (40.10%) were reduced, and QUICKI (12.16%) increased compared to HFD rats. Furthermore, in skeletal muscle, we detected increased gene and protein expression of PPAR-α, PPAR-γ, insulin receptor (INSR), insulin receptor substrate 1 (ISR-1), phosphatidylinositol-3-kinase (PI3K), and glucose transporter 4 (GLUT-4). These findings suggest that ω-3 PUFAs decrease insulin resistance of obese skeletal muscle

    Whole Blood Expression Levels of Long Noncoding RNAs: HOTAIRM1, GAS5, MZF1-AS1, and OIP5-AS1 as Biomarkers in Adolescents with Obesity-Related Asthma

    No full text
    Asthma is a heterogeneous entity encompassing distinct endotypes and varying phenotypes, characterized by common clinical manifestations, such as shortness of breath, wheezing, and variable airflow obstruction. Two major asthma endotypes based on molecular patterns are described: type 2 endotype (allergic-asthma) and T2 low endotype (obesity-related asthma). Long noncoding RNAs (lncRNAs) are transcripts of more than 200 nucleotides in length, currently involved in many diverse biological functions, such as chromatin remodeling, gene transcription, protein transport, and microRNA processing. Despite the efforts to accurately classify and discriminate all the asthma endotypes and phenotypes, if long noncoding RNAs could play a role as biomarkers in allergic asthmatic and adolescent obesity-related asthma, adolescents remain unknown. To compare expression levels of lncRNAs: HOTAIRM1, OIP5-AS1, MZF1-AS1, and GAS5 from whole blood of Healthy Adolescents (HA), Obese adolescents (O), allergic asthmatic adolescents (AA) and Obesity-related asthma adolescents (OA). We measured and compared expression levels from the whole blood of the groups mentioned above through RT-q-PCR. We found differentially expressed levels of these lncRNAs between the groups of interest. In addition, we found a discriminative value of previously mentioned lncRNAs between studied groups. Finally, we generated an interaction network through bioinformatics. Expression levels of OIP5-AS1, MZF1-AS1, HOTAIRM1, and GAS5 in whole blood from the healthy adolescent population, obese adolescents, allergic asthma adolescents, and obesity-related asthma adolescents are differently expressed. Moreover, these lncRNAs could act as molecular biomarkers that help to discriminate between all studied groups, probably through molecular mechanisms with several genes and miRNAs implicated

    Modulator Effect of AT1 Receptor Knockdown on THP-1 Macrophage Proinflammatory Activity

    No full text
    Currently, it is known that angiotensin II (AngII) induces inflammation, and an AT1R blockade has anti-inflammatory effects. The use of an AT1 receptor antagonist promotes the inhibition of the secretion of multiple proinflammatory cytokines in macrophages, as well as a decrease in the concentration of reactive oxygen species. The aim of this study was to determine the effect of AT1 receptor gene silencing on the modulation of cytokines (e.g., IL-1β, TNF-α, and IL-10) in THP-1 macrophages and the relation to the gene expression of NF-κB. Materials and Methods: We evaluated the gene expression of PPAR-γ in THP-1 macrophages using PMA (60 ng/mL). For the silencing, cells were incubated with the siRNA for 72 h and telmisartan (10 µM) was added to the medium for 24 h. After that, cells were incubated during 1 and 24 h, respectively, with Ang II (1 µM). The gene expression levels of AT1R, NF-κB, and cytokines (IL-1β, TNF-α, and IL-10) were measured by RT-qPCR. Results: We observed that silencing of the AT1 receptor causes a decrease in the expression of mRNA of proinflammatory cytokines (IL-1β and TNF-α), NF-κB, and PPAR-γ. Conclusions: We conclude that AT1R gene silencing is an alternative to modulating the production of proinflammatory cytokines such as TNF-α and IL-1β via NF-κB in macrophages and having high blood pressure decrease

    Intravenous Vitamin C as an Add-on Therapy for the Treatment of Sepsis in an Intensive Care Unit: A Prospective Cohort Study

    No full text
    Background and Objectives: According to the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), sepsis is defined as “life-threatening organ dysfunction caused by a dysregulated host response to infection”. The increased presence of free radicals causes an increase in oxidative stress. Vitamin C is an essential water-soluble vitamin with antioxidant activity and immunoregulatory effects that plays a potential role in the treatment of bacterial infections. Our aim was to evaluate the effectiveness of adding vitamin C to the conventional treatment of sepsis to decrease its mortality rate. Materials and Methods: In a prospective cohort study, we included patients with a diagnosis of sepsis and a SOFA score ≥ 9 who were evaluated in an Intensive Care Unit at a secondary-care hospital. According to the intensive care specialist, they were treated using two different strategies: Group 1—patients with sepsis treated with conventional treatment without vitamin C; Group 2—patients with sepsis with the addition of vitamin C to conventional treatment. Results: We included 34 patients with sepsis. The incidence of mortality was 38%, and 47% of patients used vitamin C as an adjuvant to the basic treatment of sepsis. In the basal analyses, patients treated with use of vitamin C compared to patients treated without vitamin C required less use of glucocorticoids (75% vs. 100%, p = 0.039). At follow-up, patients treated without vitamin C had higher mortality than patients treated with vitamin C as an adjuvant for the treatment of sepsis (55.6% vs. 18.8%, p = 0.03). We observed that the use of vitamin C was a protective factor for mortality in patients with sepsis (RR: 0.54, 95% CI: 0.31–0.96, p = 0.03). Conclusions: The use of vitamin C as an adjuvant to treatment decreases the risk of mortality by 46% in patients with sepsis and SOFA ≥ 9 compared to patients treated without vitamin C as an adjuvant to sepsis
    corecore