2 research outputs found

    Human Hepatic CD56bright NK Cells Display a Tissue-Resident Transcriptional Profile and Enhanced Ability to Kill Allogenic CD8+ T Cells

    Get PDF
    Liver-resident CD56brightCD16- natural killer (NK) cells are enriched in the human liver and are phenotypically distinct from their blood counterparts. Although these cells are capable of rapid cytotoxic effector activity, their functional role remains unclear. We hypothesise that they may contribute to immune tolerance in the liver during transplantation. RNA sequencing was carried out on FACS sorted NK cell subpopulations from liver perfusates (n=5) and healthy blood controls (n=5). Liver-resident CD56brightCD16+/- NK cells upregulate genes associated with tissue residency. They also upregulate expression of CD160 and LY9, both of which encode immune receptors capable of activating NK cells. Co-expression of CD160 and Ly9 on liver-resident NK cells was validated using flow cytometry. Hepatic NK cell cytotoxicity against allogenic T cells was tested using an in vitro co-culture system of liver perfusate-derived NK cells and blood T cells (n=10-13). In co-culture experiments, hepatic NK cells but not blood NK cells induced significant allogenic T cell death (p=0.0306). Allogenic CD8+ T cells were more susceptible to hepatic NK cytotoxicity than CD4+ T cells (p<0.0001). Stimulation of hepatic CD56bright NK cells with an anti-CD160 agonist mAb enhanced this cytotoxic response (p=0.0382). Our results highlight a role for donor liver NK cells in regulating allogenic CD8+ T cell activation, which may be important in controlling recipient CD8+ T cell-mediated rejection post liver-transplant

    Exploitation of the vitamin A/retinoic acid axis depletes ALDH1-positive cancer stem cells and re-sensitises resistant non-small cell lung cancer cells to cisplatin

    No full text
    Despite advances in personalised medicine and the emerging role of immune checkpoints in directing treatment decisions in subsets of lung cancer patients, non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related deaths worldwide. The development of drug resistance plays a key role in the relapse of lung cancer patients in the clinical setting, mainly due to the unlimited renewal capacity of residual cancer stem cells (CSCs) within the tumour cell population during chemotherapy. In this study, we investigated the function of the CSC marker, aldehyde dehydrogenase (ALDH1) in retinoic acid cell signalling using an in vitro model of cisplatin resistant NSCLC. The addition of key components in retinoic acid cell signalling, all-trans retinoic acid (ATRA) and retinol to cisplatin chemotherapy, significantly reduced ALDH1-positive cell subsets in cisplatin resistant NSCLC cells relative to their sensitive counterparts resulting in the re-sensitisation of chemo-resistant cells to the cytotoxic effects of cisplatin. Furthermore, combination of ATRA or retinol with cisplatin significantly inhibited cell proliferation, colony formation and increased cisplatin-induced apoptosis. This increase in apoptosis may, at least in part, be due to differential gene expression of the retinoic acid (RARα/β) and retinoid X (RXRα) nuclear receptors in cisplatin-resistant lung cancer cells. These data support the concept of exploiting the retinoic acid signalling cascade as a novel strategy in targeting subsets of CSCs in cisplatin resistant lung tumours
    corecore