7 research outputs found

    Intra-Amniotic Soluble Endoglin Impairs Lung Development in Neonatal Rats

    No full text
    Soluble endoglin (sENG) is increased in the amniotic fluid of women with preeclampsia and chorioamnionitis. Preterm infants born to women with these disorders have an increased risk of aberrant lung development. Whether this increased risk is secondary to elevated sENG levels is unclear. The objective of this study was to determine whether intrauterine exposure to an adenovirus overexpressing sENG impairs neonatal lung angiogenesis by modulating lung endothelial nitric oxide synthase (eNOS) signaling. Pregnant Sprague-Dawley rats were randomly assigned to receive ultrasound-guided intra-amniotic injections of adenovirus overexpressing sENG (Ad-sENG) or control adenovirus (Ad-control) on embryonic day 17. After this exposure, rat pups were maintained in normoxia and evaluated on postnatal day 14. Intra-amniotic Ad-sENG decreased lung vascular endothelial growth factor receptor 2 and eNOS expression in rat pups. This was accompanied by a marked decrease in lung angiogenesis and alveolarization. Ad-sENG-exposed pups also had an increase in right ventricular systolic pressure, weight ratio of right ventricle to left ventricle plus septum, and pulmonary vascular remodeling. In addition, exposure of human pulmonary artery endothelial cells to recombinant sENG reduced endothelial tube formation and protein levels of eNOS, phosphorylated eNOS, and phosphorylated Smad1/5. Together, our findings demonstrate that intrauterine exposure to an adenovirus overexpressing sENG disrupts lung development by impairing Smad1/5-eNOS signaling. We speculate that sENG-mediated dysregulation of Smad1/5-eNOS signaling contributes to impaired lung development and potentially primes the developing lung for further postnatal insults. Further studies exploring the relationship between amniotic fluid sENG levels and preterm respiratory outcomes will be necessary

    The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury

    No full text
    Mesenchymal stem cells (MSC) improve alveolar and vascular structures in experimental models of bronchopulmonary dysplasia (BPD). Female MSC secrete more anti-inflammatory and pro-angiogenic factors as compared to male MSC. Whether the therapeutic efficacy of MSC in attenuating lung injury in an experimental model of BPD is influenced by the sex of the donor MSC or recipient is unknown. Here we tested the hypothesis that female MSC would have greater lung regenerative properties than male MSC in experimental BPD and this benefit would be more evident in males.To determine whether intra-tracheal (IT) administration of female MSC to neonatal rats with experimental BPD has more beneficial reparative effects as compared to IT male MSC.Newborn Sprague-Dawley rats exposed to normoxia (RA) or hyperoxia (85% O2) from postnatal day (P) 2- P21 were randomly assigned to receive male or female IT bone marrow (BM)-derived green fluorescent protein (GFP+) MSC (1 x 106 cells/50 μl), or Placebo on P7. Pulmonary hypertension (PH), vascular remodeling, alveolarization, and angiogenesis were assessed at P21. PH was determined by measuring right ventricular systolic pressure (RVSP) and pulmonary vascular remodeling was evaluated by quantifying the percentage of muscularized peripheral pulmonary vessels. Alveolarization was evaluated by measuring mean linear intercept (MLI) and radial alveolar count (RAC). Angiogenesis was determined by measuring vascular density. Data are expressed as mean ± SD, and analyzed by ANOVA.There were no significant differences in the RA groups. Exposure to hyperoxia resulted in a decrease in vascular density and RAC, with a significant increase in MLI, RVSP, and the percentage of partially and fully muscularized pulmonary arterioles. Administration of both male and female MSC significantly improved vascular density, alveolarization, RVSP, percent of muscularized vessels and alveolarization. Interestingly, the improvement in PH and vascular remodeling was more robust in the hyperoxic rodents who received MSC from female donors. In keeping with our hypothesis, male animals receiving female MSC, had a greater improvement in vascular remodeling. This was accompanied by a more significant decrease in lung pro-inflammatory markers and a larger increase in anti-inflammatory and pro-angiogenic markers in male rodents that received female MSC. There were no significant differences in MSC engraftment among groups.Female BM-derived MSC have greater therapeutic efficacy than male MSC in reducing neonatal hyperoxia-induced lung inflammation and vascular remodeling. Furthermore, the beneficial effects of female MSC were more pronounced in male animals. Together, these findings suggest that female MSC maybe the most potent BM-derived MSC population for lung repair in severe BPD complicated by PH

    SARS-CoV-2 seroprevalence among the general population and healthcare workers in India, December 2020–January 2021

    No full text
    Background: Earlier serosurveys in India revealed seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) of 0.73% in May–June 2020 and 7.1% in August–September 2020. A third serosurvey was conducted between December 2020 and January 2021 to estimate the seroprevalence of SARS-CoV-2 infection among the general population and healthcare workers (HCWs) in India. Methods: The third serosurvey was conducted in the same 70 districts as the first and second serosurveys. For each district, at least 400 individuals aged ≥10 years from the general population and 100 HCWs from subdistrict-level health facilities were enrolled. Serum samples from the general population were tested for the presence of immunoglobulin G (IgG) antibodies against the nucleocapsid (N) and spike (S1-RBD) proteins of SARS-CoV-2, whereas serum samples from HCWs were tested for anti-S1-RBD. Weighted seroprevalence adjusted for assay characteristics was estimated. Results: Of the 28,598 serum samples from the general population, 4585 (16%) had IgG antibodies against the N protein, 6647 (23.2%) had IgG antibodies against the S1-RBD protein, and 7436 (26%) had IgG antibodies against either the N protein or the S1-RBD protein. Weighted and assay-characteristic-adjusted seroprevalence against either of the antibodies was 24.1% [95% confidence interval (CI) 23.0–25.3%]. Among 7385 HCWs, the seroprevalence of anti-S1-RBD IgG antibodies was 25.6% (95% CI 23.5–27.8%). Conclusions: Nearly one in four individuals aged ≥10 years from the general population as well as HCWs in India had been exposed to SARS-CoV-2 by December 2020

    Abstracts of National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology

    No full text
    This book contains the abstracts of the papers presented at the National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology (NCB4EBT-2021) Organized by the Department of Biotechnology, National Institute of Technology Warangal, India held on 29–30 January 2021. This conference is the first of its kind organized by NIT-W which covered an array of interesting topics in biotechnology. This makes it a bit special as it brings together researchers from different disciplines of biotechnology, which in turn will also open new research and cooperation fields for them. Conference Title: National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental BiotechnologyConference Acronym: NCB4EBT-2021Conference Date: 29–30 January 2021Conference Location: Online (Virtual Mode)Conference Organizer: Department of Biotechnology, National Institute of Technology Warangal, Indi
    corecore