163 research outputs found

    ASSESSMENT OF WATER QUALITY OF THATIPUDI RESERVOIR OF VIZIANAGARAM DISTRICT OF ANDHRA PRADESH

    Get PDF
    The authors present work deals with the assessment of the water quality of the water samples collected from Thatipudi reservoir situated in Vizianagaram district of Andhra Pradesh, by analyzing some selected physico-chemical parameters and chosen heavy metals. Water quality parameters such as pH, EC, DO, COD, BOD, TDS, total hardness, calcium, magnesium, sodium, potassium, iron, chloride, nitrite, phosphate, carbonate, bicarbonate and heavy metals such as zinc, manganese, lead and chromium were analyzed for the water samples collected from the reservoir. The results were compared with the standard values prescribed by IS 10500. The parameters such as SAR, RSC, and Mg hazardous were analyzed and it was found that all these values were within the prescribed limit value. Saturation index values of the water samples analyzed were found to be in the range of 0.3-0.84 indicating, Water is supersaturated with respect to calcium carbonate (CaCO3) and scale forming may occur, but non corrosive..  KEYWORDS:Dams, Thatipudi reservoir water quality, physico-chemical charactersÂ

    Hesperidin Ameliorates Immobilization-Stress-Induced Behavioral and Biochemical Alterations and Mitochondrial Dysfunction in Mice by Modulating Nitrergic Pathway

    Get PDF
    The present study was aimed to evaluate the protective effect of hesperidin against immobilization-stress-induced alterations in biochemical, behavioral, and mitochondrial functions in mice. In many instances neuroscientists have reported that acute immobilization stress for 6 h resulted in anxiety and impaired locomotor activity due to excess oxidative-nitrergic stress, depletion of antioxidant defense mechanisms, and mitochondrial dysfunction in animals. In the present study, 6 h of acute immobilization stress had significantly altered the behavioral (anxiety and memory) and biochemical parameters coupled with mitochondrial dysfunction in Swiss albino mice. Fourteen days of pretreatment with Hesperidin (50 and 100 mg/kg, p.o.) significantly and dose-dependently inhibited the behavioral and biochemical alterations and mitochondrial dysfunction caused by acute immobilization stress. Furthermore, pre-treatment of l-arginine (50 mg/kg, i.p.), a nitric oxide precursor, reversed the protective effect of Hesperidin (50 and 100 mg/kg) (P < 0.05). In contrast, pretreatment of l-NAME (5 mg/kg, i.p.), a nitric oxide synthase inhibitor, potentiated the protective effect of Hesperidin (P < 0.05). These results suggest the possible involvement of nitrergic pathway in the protective effect Hesperidin against immobilization-stress-induced behavioral, biochemical, and mitochondrial dysfunction in mice

    Aerodynamic Design Improvement for an Intercity Bus

    Get PDF
    Intercity buses travel about 250 to 350 km in a stretch and usually are of sleeper coach mode. The exterior styling, sleeper comfort and aerodynamically efficient design for reduced fuel consumption are the three essential factors for a successful operation in the competitive world. The bus body building companies prioritizes the exterior looks of the bus and ignore the aerodynamic aspect. Scientific design of sleepers for increased comfort of the passengers is seldom seen. The overall aim of this project was to redesign an intercity bus with enhanced exterior styling, reduced aerodynamic drag and increased comfort for the passengers. Principles of product design were used to analyze the styling and comfort. The benchmarked high floor bus was redesigned with low - floor for reduced aerodynamic drag. The exterior was redesigned with emphasis on improvised aerodynamic performance and appealing looks. The interior was modified to meet aspirations of the commuters. The results of the redesigned exterior body showed a reduction of about 45% in coefficient of drag and overall aerodynamic drag reduction by 60% due to combined effect of reduced coefficient of drag and frontal area

    Observation of spin glass state in weakly ferromagnetic Sr2_2FeCoO6_6 double perovskite

    Get PDF
    We report the observation of spin glass state in the double perovskite oxide Sr2_{2}FeCoO6_{6} prepared through sol-gel technique. Initial structural studies using x rays reveal that the compound crystallizes in tetragonal I4/mI 4/m structure with lattice parameters, aa = 5.4609(2) \AA and cc = 7.7113(7) \AA. The temperature dependent powder x ray studies reveal no structural phase transition in the temperature range 10 -- 300 K. However, the unit cell volume shows an anomaly coinciding with the magnetic transition temperature thereby suggesting a close connection between lattice and magnetism. Neutron diffraction studies and subsequent bond valence sums analysis show that in Sr2_{2}FeCoO6_{6}, the BB site is randomly occupied by Fe and Co in the mixed valence states of Fe3+^{3+}/Fe4+^{4+} and Co3+^{3+}/Co4+^{4+}. The random occupancy and mixed valence sets the stage for inhomogeneous magnetic exchange interactions and in turn, for the spin glass like state in this double perovskite which is observed as an irreversibility in temperature dependent dc magnetization at TfT_f\sim 75 K. Thermal hysteresis observed in the magnetization profile of Sr2_{2}FeCoO6_{6} is indicative of the mixed magnetic phases present. The dynamic magnetic susceptibility displays characteristic frequency dependence and confirms the spin glass nature of this material. Dynamical scaling analysis of χ(T)\chi'(T) yields a critical temperature TctT_{ct} = 75.14(8) K and an exponent zνz\nu = 6.2(2) typical for spin glasses. The signature of presence of mixed magnetic interactions is obtained from the thermal hysteresis in magnetization of Sr2_{2}FeCoO6_{6}. Combining the neutron and magnetization results of Sr2_2FeCoO6_6, we deduce the spin states of Fe to be in low spin while that of Co to be in low spin and intermediate spin.Comment: 23 pages, 6 figures, accepted in J. Appl. Phy

    Authentication of Garcinia fruits and food supplements using DNA barcoding and NMR spectroscopy

    Get PDF
    Garcinia L. (Clusiaceae) fruits are a rich source of (−)-hydroxycitric acid, and this has gained considerable attention as an anti-obesity agent and a popular weight loss food supplement. In this study, we assessed adulteration of morphologically similar samples of Garcinia using DNA barcoding, and used NMR to quantify the content of (−)-hydroxycitric acid and (−)-hydroxycitric acid lactone in raw herbal drugs and Garcinia food supplements. DNA barcoding revealed that mostly G. gummi-gutta (previously known as G. cambogia) and G. indica were traded in Indian herbal markets, and there was no adulteration. The content of (−)-hydroxycitric acid and (−)-hydroxycitric acid lactone in the two species varied from 1.7% to 16.3%, and 3.5% to 20.7% respectively. Analysis of ten Garcinia food supplements revealed a large variation in the content of (−)-hydroxycitric acid, from 29 mg (4.6%) to 289 mg (50.6%) content per capsule or tablet. Only one product contained quantifiable amounts of (−)-hydroxycitric acid lactone. Furthermore the study demonstrates that DNA barcoding and NMR could be effectively used as a regulatory tool to authenticate Garcinia fruit rinds and food supplements

    Dynamic alterations in monocyte numbers, subset frequencies and activation markers in acute and convalescent COVID-19 individuals

    Get PDF
    Monocytes are thought to play an important role in host defence and pathogenesis of COVID-19. However, a comprehensive examination of monocyte numbers and function has not been performed longitudinally in acute and convalescent COVID-19. We examined the absolute counts of monocytes, the frequency of monocyte subsets, the plasma levels of monocyte activation markers using flowcytometry and ELISA in seven groups of COVID-19 individuals, classified based on days since RT-PCR confirmation of SARS-CoV2 infection. Our data shows that the absolute counts of total monocytes and the frequencies of intermediate and non-classical monocytes increases from Days 15–30 to Days 61–90 and plateau thereafter. In contrast, the frequency of classical monocytes decreases from Days 15–30 till Days 121–150. The plasma levels of sCD14, CRP, sCD163 and sTissue Factor (sTF)—all decrease from Days 15–30 till Days 151–180. COVID-19 patients with severe disease exhibit higher levels of monocyte counts and higher frequencies of classical monocytes and lower frequencies of intermediate and non-classical monocytes and elevated plasma levels of sCD14, CRP, sCD163 and sTF in comparison with mild disease. Thus, our study provides evidence of dynamic alterations in monocyte counts, subset frequencies and activation status in acute and convalescent COVID-19 individuals

    Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis

    Get PDF
    Crystals cause injury in numerous disorders, and induce inflammation via the NLRP3 inflammasome, however, it remains unclear how crystals induce cell death. Here we report that crystals of calcium oxalate, monosodium urate, calcium pyrophosphate dihydrate and cystine trigger caspase-independent cell death in five different cell types, which is blocked by necrostatin-1. RNA interference for receptor-interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain like (MLKL), two core proteins of the necroptosis pathway, blocks crystal cytotoxicity. Consistent with this, deficiency of RIPK3 or MLKL prevents oxalate crystal-induced acute kidney injury. The related tissue inflammation drives TNF-alpha-related necroptosis. Also in human oxalate crystal-related acute kidney injury, dying tubular cells stain positive for phosphorylated MLKL. Furthermore, necrostatin-1 and necrosulfonamide, an inhibitor for human MLKL suppress crystal-induced cell death in human renal progenitor cells. Together, TNF-alpha/TNFR1, RIPK1, RIPK3 and MLKL are molecular targets to limit crystal-induced cytotoxicity, tissue injury and organ failure

    Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis

    Get PDF
    Crystals cause injury in numerous disorders, and induce inflammation via the NLRP3 inflammasome, however, it remains unclear how crystals induce cell death. Here we report that crystals of calcium oxalate, monosodium urate, calcium pyrophosphate dihydrate and cystine trigger caspase-independent cell death in five different cell types, which is blocked by necrostatin-1. RNA interference for receptor-interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain like (MLKL), two core proteins of the necroptosis pathway, blocks crystal cytotoxicity. Consistent with this, deficiency of RIPK3 or MLKL prevents oxalate crystal-induced acute kidney injury. The related tissue inflammation drives TNF-alpha-related necroptosis. Also in human oxalate crystal-related acute kidney injury, dying tubular cells stain positive for phosphorylated MLKL. Furthermore, necrostatin-1 and necrosulfonamide, an inhibitor for human MLKL suppress crystal-induced cell death in human renal progenitor cells. Together, TNF-alpha/TNFR1, RIPK1, RIPK3 and MLKL are molecular targets to limit crystal-induced cytotoxicity, tissue injury and organ failure
    corecore