536 research outputs found

    The effect of heavy tars (toluene and naphthalene) on the electrochemical performance of an anode-supported SOFC running on bio-syngas

    Full text link
    The effect of heavy tar compounds on the performance of a Ni-YSZ anode supported solid oxide fuel cell was investigated. Both toluene and naphthalene were chosen as model compounds and tested separately with a simulated bio-syngas. Notably, the effect of naphthalene is almost negligible with pure H2 feed to the SOFC, whereas a severe degradation is observed when using a bio-syngas with an H2:CO = 1. The tar compound showed to have a remarkable effect on the inhibition of the WGS shift-reaction, possibly also on the CO direct electro-oxidation at the three-phase-boundary. An interaction through adsorption of naphthalene on nickel catalytic and electrocatalytic active sites is a plausible explanation for observed degradation and strong performance loss. Different sites seem to be involved for H2 and CO electro-oxidation and also with regard to catalytic water gas shift reaction. Finally, heavy tars (C>=10) must be regarded as a poison more than a fuel for SOFC applications, contrarily to lighter compounds such benzene or toluene that can directly reformed within the anode electrode. The presence of naphthalene strongly increases the risk of anode re-oxidation in a syngas stream as CO conversion to H2 is inhibited and also CH4 conversion is blocked

    Thermodynamic Analysis of Beam down Solar Gas Turbine Power Plant equipped with Concentrating Receiver System

    Get PDF
    Abstract. Thermodynamic analysis of a closed cycle, solar powered Brayton gas turbine power plant with Concentrating Receiver system has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage where the water is scarce. With the normal Brayton cycle a Concentrating Receiver System has been analysed which has a dependence on field density and optical system. This study presents a method of optimization of design parameter, such as the receiver working temperature and the heliostats density. This method aims at maximizing the overall efficiency of the three major subsystem that constitute the entire plant , namely, the heliostat field and the tower, the receiver and the power block. The results of the optimization process are shown and analysed

    Physical activation of waste-derived materials for biogas cleaning

    Get PDF
    Biogas produced from biomass is carbon neutral. In fact, the carbon feedstock of biomass is converted into gas phase. Biogas use in high efficient energy systems, such as Solid Oxide Fuel Cells is a viable choice. One of the most important drawbacks for such systems is related to the interaction between trace compounds and anode section. Gas cleaning through physical removal mechanisms is the simplest and cheapest method adopted in the literature. Coupled with this solution, the recovery of waste materials is an efficient application of the circular economy approach. In this work, a physical activation process was investigated experimentally for waste-derived materials at a temperature of 700 °C. The removal of H2S was considered as the most abundant trace compound. Activated biochar showed an adsorption capacity comparable to commercial sorbents, while the performance of ashes are still too poor. An important parameter to be considered is the biogas humidity content that enters in competition with trace compounds that must be removed

    Calculation for physical and chemical exergy of flows in systems elaborating mixed-phase flows and a case study in an IRSOFC plant

    Get PDF
    The paper deals with the calculation of physical and chemical exergy of flows in systems elaborating mixed-phase flows, such as steam methane reforming and coal gasification systems. The flows involved are mixtures of gases, which can be treated as ideal gases, and steam. The mixtures in which the steam can be treated as ideal gas and those in which the steam cannot be treated as ideal gas are considered separately. As a case study, the calculation is used to evaluate the physical and chemical exergy content of the flows of a system composed by a pressurized internal reforming solid oxide fuel cell (IRSOFC) combined with a gas turbine. Finally, a thermoeconomic analysis of the system is made. Copyright © 2004 John Wiley & Sons, Ltd

    Synthetic-Gas Production through Chemical Looping Process with Concentrating Solar Dish: Temperature-Distribution Evaluation

    Get PDF
    The energy crisis and the adaptation of the global energy structure promote the development of renewable energies, in particular solar energy, also for syngas production. In this work, attention was focused on solar devices, necessary to provide high-temperature heat for the reduction reaction of metal oxides involved in the chemical looping driven by solar energy. Thermochemical processes for synthetic-gas production and CO2 sequestration were investigated using a concentrating solar thermal system. This paper proposes a useful forecasting model of the receiver temperature to make a realistic estimate of the system’s producibility for the different periods of the year. The model proposed was validated in the winter season, and the predicted temperature varied below 5% considering the real experimental data (442–472 ◦C). The validated model was used to evaluate the temperature receiver in spring and in summer, when the thermal level is reliable for thermochemical processes. From the spring season until the completion of the summer season, optimum conditions inside the receiver were reached (above 1000 ◦C). These preliminary findings could be used for the development of large-scale production systems

    CFD Performance Analysis of a Dish-Stirling System for Microgeneration

    Get PDF
    The sustainable transition towards renewable energy sources has become increasingly important nowadays. In this work, a microgeneration energy system was investigated. The system is composed of a solar concentrator system coupled with an alpha-type Stirling engine. The aim was to maximize the production of electrical energy. By imposing a mean value of the direct irradiance on the system, the model developed can obtain the temperature of the fluid contained inside the Stirling engine. The heat exchanger of the microgenerator system was analyzed, focusing on the solar coupling with the engine, with a multiphysical approach (COMSOL v5.3). A real Stirling cycle was implemented using two methods for comparison: the first-order empirical Beale equation and the Schmidt isothermal method. Results demonstrated that a concentrator of 2.4 m in diameter can generate, starting from 800 W/m2 of mean irradiance, a value of electrical energy equal to 0.99 kWe

    A Review on CO2 Capture Technologies with Focus on CO2-Enhanced Methane Recovery from Hydrates

    Get PDF
    Natural gas is considered a helpful transition fuel in order to reduce the greenhouse gas emissions of other conventional power plants burning coal or liquid fossil fuels. Natural Gas Hydrates (NGHs) constitute the largest reservoir of natural gas in the world. Methane contained within the crystalline structure can be replaced by carbon dioxide to enhance gas recovery from hydrates. This technical review presents a techno-economic analysis of the full pathway, which begins with the capture of CO2 from power and process industries and ends with its transportation to a geological sequestration site consisting of clathrate hydrates. Since extracted methane is still rich in CO2, on-site separation is required. Focus is thus placed on membrane-based gas separation technologies widely used for gas purification and CO2 removal from raw natural gas and exhaust gas. Nevertheless, the other carbon capture processes (i.e., oxy-fuel combustion, pre-combustion and post-combustion) are briefly discussed and their carbon capture costs are compared with membrane separation technology. Since a large-scale Carbon Capture and Storage (CCS) facility requires CO2 transportation and storage infrastructure, a technical, cost and safety assessment of CO2 transportation over long distances is carried out. Finally, this paper provides an overview of the storage solutions developed around the world, principally studying the geological NGH formation for CO2 sinks

    Fuel cell cogeneration for building sector: European status

    Get PDF
    The advantages of fuel cell based micro-cogeneration systems are the high electrical and total efficiency coupled with zero pollutants emission, which makes them good candidates for distributed generation in the building sector. The status of installations, worldwide and European initiatives and the available supporting schemes in Europe are presented
    • …
    corecore