66 research outputs found

    Spectroscopically forbidden infra-red emission in Au-vertical graphene hybrid nanostructures

    Full text link
    Implementation of Au nanoparticles (NPs) is a subject for frontier plasmonic research due to its fascinating optical properties. Herein, the present study deals with plasmonic assisted emission properties of Au NPs-vertical graphene (VG) hybrid nanostructures. The influence of effective polarizability of Au NPs on the surface enhanced Raman scattering and luminescence properties is investigated. In addition, a remarkable infra-red (IR) emission in the hybrid nanostructures is observed and interpreted on the basis of intra-band transitions in Au NPs. The flake-like nanoporous VG structure is invoked for the generation of additional confined photons to impart additional momentum and a gradient of confined excitation energy towards initiating the intra-band transitions of Au NPs. Integrating Au plasmonic materials in three-dimensional VG nanostructures enhances the light-matter interactions. The present study provides a new adaptable plasmonic assisted pathway for optoelectronic and sensing applications.Comment: 5 figure

    Immunohistochemical Evaluation of p63, E-Cadherin, Collagen I and III Expression in Lower Limb Wound Healing under Honey

    Get PDF
    Honey is recognized traditionally for its medicinal properties and also appreciated as a topical healing agent for infected and noninfected wounds. This study evaluates impact of honey-based occlusive dressing on nonhealing (nonresponding to conventional antibiotics) traumatic lower limb wounds (n = 34) through clinicopathological and immunohistochemical (e.g., expression of p63, E-cadherin, and Collagen I and III) evaluations to enrich the scientific validation. Clinical findings noted the nonadherence of honey dressing with remarkable chemical debridement and healing progression within 11–15 days of postintervention. Histopathologically, in comparison to preintervention biopsies, the postintervention tissues of wound peripheries demonstrated gradual normalization of epithelial and connective tissue features with significant changes in p63+ epithelial cell population, reappearance of membranous E-cadherin (P < .0001), and optimum deposition of collagen I and III (P < .0001). Thus, the present study for the first time reports the impact of honey on vital protein expressions in epithelial and connective tissues during repair of nonhealing lower limb wounds

    Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells

    Get PDF
    Determination of cancer aggressiveness is mainly assessed in tissues by looking at the grade of cancer. There is a lack of specific method to determine aggressiveness of cancer cells in vitro. In our present work, we have proposed a bio-impedance based non-invasive method to differentiate aggressive property of two breast cancer cell lines. Real-time impedance analysis of MCF-7 (less aggressive) and MDA-MB-231 cells (more aggressive) demonstrated unique growth pattern. Detailed slope-analysis of impedance curves at different growth phases showed that MDA-MB-231 had higher proliferation rate and intrinsic resistance to cell death, when allowed to grow in nutrient and space limiting conditions. This intrinsic nature of death resistance of MDA-MB-231 was due to modulation and elongation of filopodia, which was also observed during scanning electron microscopy. Results were also similar when validated by cell cycle analysis. Additionally, wavelet based analysis was used to demonstrate that MCF-7 had lesser micromotion based cellular activity, when compared with MDA-MB-231. Combined together, we hypothesize that analysis of growth rate, death resistance and cellular energy, through bioimpedance based analysis can be used to determine and compare aggressiveness of multiple cancer cell lines. This further opens avenues for extrapolation of present work to human tumor tissue samples
    • …
    corecore