3,376 research outputs found

    BeppoSAX observations of XTE J1946+274

    Full text link
    We report on the BeppoSAX monitoring of a giant outburst of the transient X-ray pulsar XTE J1946+274 in 1998. The source was detected with a flux of ~ 4 x 10^(-9) erg cm^(-2) s^(-1) (in 0.1 - 120 keV range). The broadband spectrum, typical for accreting pulsars, is well described by a cutoff power law with a cyclotron resonance scattering feature (CRSF) at ~ 38 keV. This value is consistent with earlier reports based on the observations with Suzaku at factor of ten lower luminosity, which implies that the feature is formed close to the neutron star surface rather than in the accretion column. Pulsations with P ~ 15.82 s were observed up to ~ 70 keV. The pulse profile strongly depends on energy and is characterised by a "soft" and a "hard" peaks shifted by half period, which suggests a strong phase dependence of the spectrum, and that two components with roughly orthogonal beam patterns are responsible for the observed pulse shape. This conclusion is supported by the fact that the CRSF, despite its relatively high energy, is only detected in the spectrum of the soft peak of the pulse profile. Along with the absence of correlation of the line energy with luminosity, this could be explained in the framework of the recently proposed "reflection" model for CRSF formation. However more detailed modelling of both line and continuum formation are required to confirm this interpretation

    Swift/BAT measurements of the cyclotron line energy decay in the accreting neutron star Her X-1: indication of an evolution of the magnetic field?

    Full text link
    Context: The magnetic field is a crucial ingredient of neutron stars. It governs the physics of accretion and of the resulting high-energy emission in accreting pulsars. Studies of the cyclotron resonant scattering features (CRSFs) seen as absorption lines in the X-ray spectra of the pulsars permit direct measuremets of the field strength. Aims: From an analysis of a number of pointed observations with different instruments, the energy of CRSF, Ecyc, has recently been found to decay in Her X-1, which is one of the best-studied accreting pulsars. We present our analysis of a homogeneous and almost uninterrupted monitoring of the line energy with Swift/BAT. Methods: We analyzed the archival Swift/BAT observations of Her X-1 from 2005 to 2014. The data were used to measure the CRSF energy averaged over several months. Results: The analysis confirms the long-term decay of the line energy. The downward trend is highly significant and consistent with the trend measured with the pointed observations: dEcyc/dt ~-0.3 keV per year. Conclusions: The decay of Ecyc either indicates a local evolution of the magnetic field structure in the polar regions of the neutron star or a geometrical displacement of the line-forming region due to long-term changes in the structure of the X-ray emitting region. The shortness of the observed timescale of the decay, -Ecyc/(dEcyc/dt) ~ 100 yr, suggests that trend reversals and/or jumps of the line energy might be observed in the future.Comment: Accepted for publication in Astronomy&Astrophysic

    Dirac Operator on a disk with global boundary conditions

    Get PDF
    We compute the functional determinant for a Dirac operator in the presence of an Abelian gauge field on a bidimensional disk, under global boundary conditions of the type introduced by Atiyah-Patodi-Singer. We also discuss the connection between our result and the index theorem.Comment: RevTeX, 11 pages. References adde

    Chemical studies of the passivation of GaAs surface recombination using sulfides and thiols

    Get PDF
    Steady-state photoluminescence, time-resolved photoluminescence, and x-ray photoelectron spectroscopy have been used to study the electrical and chemical properties of GaAs surfaces exposed to inorganic and organic sulfur donors. Despite a wide variation in S2–(aq) concentration, variation of the pH of aqueous HS–solutions had a small effect on the steady-state n-type GaAs photoluminescence intensity, with surfaces exposed to pH=8, 0.1-M HS–(aq) solutions displaying comparable luminescence intensity relative to those treated with pH=14, 1.0-M Na2S·9H2O(aq). Organic thiols (R-SH, where R=–CH2CH2SH or –C6H4Cl) dissolved in nonaqueous solvents were found to effect increases in steady-state luminescence yields and in time-resolved luminescence decay lifetimes of (100)-oriented GaAs. X-ray photoelectron spectroscopy showed that exposure of GaAs surfaces to these organic systems yielded thiols bound to the GaAs surface, but such exposure did not remove excess elemental As and did not form a detectable As2S3 overlayer on the GaAs. These results imply that complete removal of As0 or formation of monolayers of As2S3 is not necessary to effect a reduction in the recombination rate at etched GaAs surfaces. Other compounds that do not contain sulfur but that are strong Lewis bases, such as methoxide ion, also improved the GaAs steady-state photoluminescence intensity. These results demonstrate that a general class of electron-donating reagents can be used to reduce nonradiative recombination at GaAs surfaces, and also imply that prior models focusing on the formation of monolayer coverages of As2S3 and Ga2S3 are not adequate to describe the passivating behavior of this class of reagents. The time-resolved, high level injection experiments clearly demonstrate that a shift in the equilibrium surface Fermi-level energy is not sufficient to explain the luminescence intensity changes, and confirm that HS– and thiol-based reagents induce substantial reductions in the surface recombination velocity through a change in the GaAs surface state recombination rate

    Pulse phase and precession phase resolved spectroscopy of Her X-1: studying a representative Main-On with RXTE

    Full text link
    We performed a detailed pulse phase resolved spectroscopy of the accreting binary X-ray pulsar Her X-1 in the energy range 3.5-75 keV and have established pulse phase profiles for all spectral parameters. For the centroid of the cyclotron line, the photon index and the flux of the 6.4 keV iron line, we have studied the variation as a function of 35 d phase. We analyzed RXTE observations of the Main-On of November 2002. Four different time intervals of about 1 d duration were selected to provide a good coverage of a complete Main-On. The intervals are centered at 35 d phase 0.03, 0.10, 0.15, and 0.20, respectively. All spectral parameters show a strong modulation with pulse phase. While the centroid energy of the cyclotron line follows roughly the shape of the pulse profile, both the photon index and the iron line intensity exhibit distinct minima around the peak of the X-ray pulse. With respect to variations of the observed profiles with 35 d phase, we find that there is a clear evolution of the shape of the pulse profiles (flux versus pulse phase), a moderate increase of the maximum cyclotron line energy (found around pulse phase 0.7), but no significant evolution of the shape of the pulse phase profiles of the cyclotron line energy, the spectral power law index or the iron line intensity. The variation of spectral parameters as a function of the pulse phase provides important information about the system: 1. the disappearance of the Fe line flux near the highest continuum flux may be an indication of a hollow cone geometry of the accretion structure; ii. the apparent non-dependence of the cyclotron line energy profiles on 35 d phase provides a new possibility to test the model of free precession of the neutron star, proposed to be responsible for the systematic variations in the pulse profiles.Comment: 10 pages, 11 figures, Accepted by A&A on the 22/12/201

    Discovery of Microsecond Soft Lags in the X-Ray Emission of the Atoll Source 4U1636-536

    Get PDF
    Exploiting the presence of kilohertz quasi-periodic oscillations (QPOs) in the timing power spectrum, we find that the soft x-ray emission of the neutron-star X-ray binary and atoll source 4U1636-536 modulated at the QPO frequency lags behind that of the hard x-ray emission. Emission in the 3.8-6.4 keV band is delayed by 25.0 +/- 3.3 microseconds relative to the 9.3-69 keV band. The delay increases in magnitude with increasing energy. Our results are consistent with those of Vaughan et al. (1997), when the sign is corrected (Vaughan et al. 1998), for the atoll source 4U1608-52. The soft lag could be produced by Comptonization of hard photons injected into a cooler electron cloud or by intrinsic spectral softening of the emission during each oscillation cycle.Comment: Accepted to the Astrophysical Journal Letters, 4 page
    • …
    corecore