16 research outputs found

    Semantic scheduling of virtualized infrastructures for scientific workflows

    Get PDF
    Virtualized Infrastructures are a promising way for providing flexible and dynamic computing solutions for resourceconsuming tasks. Scientific Workflows are one of these kind of tasks, as they need a large amount of computational resources during certain periods of time. To provide the best infrastructure configuration for a workflow it is necessary to explore as many providers as possible taking into account different criteria like Quality of Service, pricing, response time, network latency, etc. Moreover, each one of these new resources must be tuned to provide the tools and dependencies required by each of the steps of the workflow. Working with different infrastructure providers, either public or private using their own concepts and terms, and with a set of heterogeneous applications requires a framework for integrating all the information about these elements. This work proposes semantic technologies for describing and integrating all the information about the different components of the overall system and a set of policies created by the user. Based on this information a scheduling process will be performed to generate an infrastructure configuration defining the set of virtual machines that must be run and the tools that must be deployed on them

    A semantic scheduler architecture for federated hybrid clouds

    Get PDF
    Cloud computing is one the most relevant computing paradigms available nowadays. Its adoption has increased during last years due to the large investment and research from business enterprises and academia institutions. Among all the services cloud providers usually offer, Infrastructure as a Service has reached its momentum for solving HPC problems in a more dynamic way without the need of expensive investments. The integration of a large number of providers is a major goal as it enables the improvement of the quality of the selected resources in terms of pricing, speed, redundancy, etc. In this paper, we propose a system architecture, based on semantic solutions, to build an interoperable scheduler for federated clouds that works with several IaaS (Infrastructure as a Service) providers in a uniform way. Based on this architecture we implement a proof-of-concept prototype and test it with two different cloud solutions to provide some experimental results about the viability of our approach

    Leveraging Semantics to Improve Reproducibility in Scientific Workflows

    Full text link
    Reproducibility of published results is a cornerstone in scientific publishing and progress. Therefore, the scientific community has been encouraging authors and editors to publish their contributions in a verifiable and understandable way. Efforts such as the Reproducibility Initiative [1], or the Reproducibility Projects on Biology [2] and Psychology [3] domains, have been defining standards and patterns to assess whether an experimental result is reproducible

    A semantic-based approach to attain reproducibility of computational environments in scientific workflows: a case study

    Get PDF
    Reproducible research in scientific workflows is often addressed by tracking the provenance of the produced results. While this approach allows inspecting intermediate and final results, improves understanding, and permits replaying a workflow execution, it does not ensure that the computational environment is available for subsequent executions to reproduce the experiment. In this work, we propose describing the resources involved in the execution of an experiment using a set of semantic vocabularies, so as to conserve the computational environment. We define a process for documenting the workflow application, management system, and their dependencies based on 4 domain ontologies. We then conduct an experimental evaluation using a real workflow application on an academic and a public Cloud platform. Results show that our approach can reproduce an equivalent execution environment of a predefined virtual machine image on both computing platforms

    OLC, On-Line Compiler to Teach Programming Languages

    Get PDF
    The advance of Internet towards Web 2.0 conveys the potential it has in a wide range of scopes. The ongoing progress of the Web technology and its availability in teaching and learning, as well as a students’ profile increasingly more used to managing an important amount of digital information, offers lecturers the opportunity and challenge of putting at students’ disposal didactic tools making use of the Internet. Programming is one of the essential areas taught in university studies of Computer Science and other engineering degrees. At present, it is a knowledge acquired through tutorial classes and the practice with different tools for programming. This paper shows the acquired experience in the development and use of a simple compiler accessible through a Web page. In addition it presents a teaching proposal for its use in subjects that include programming languages lessons. OLC - On-Line Compiler - is an application which greatly lightens the student’s workload at the initial stage of programming. During this initial period they will neither have to deal with the complexities of the installation and the configuration of these types of tools, nor with the understanding of multiple options which they present. Therefore students can concentrate on the comprehension of the programming structures and the programming language to be studied

    A Semantic-Based Approach to Attain Reproducibility of Computational Environments in Scientific Workflows: A Case Study

    Get PDF
    Abstract. Reproducible research in scientific workflows is often addressed by tracking the provenance of the produced results. While this approach allows inspecting intermediate and final results, improves understanding, and permits replaying a workflow execution, it does not ensure that the computational environment is available for subsequent executions to reproduce the experiment. In this work, we propose describing the resources involved in the execution of an experiment using a set of semantic vocabularies, so as to conserve the computational environment. We define a process for documenting the workflow application, management system, and their dependencies based on 4 domain ontologies. We then conduct an experimental evaluation using a real workflow application on an academic and a public Cloud platform. Results show that our approach can reproduce an equivalent execution environment of a predefined virtual machine image on both computing platforms

    A Semantic-Based Approach to Attain Reproducibility of Computational Environments in Scientific Workflows: A Case Study

    Get PDF
    Abstract. Reproducible research in scientific workflows is often addressed by tracking the provenance of the produced results. While this approach allows inspecting intermediate and final results, improves understanding, and permits replaying a workflow execution, it does not ensure that the computational environment is available for subsequent executions to reproduce the experiment. In this work, we propose describing the resources involved in the execution of an experiment using a set of semantic vocabularies, so as to conserve the computational environment. We define a process for documenting the workflow application, management system, and their dependencies based on 4 domain ontologies. We then conduct an experimental evaluation using a real workflow application on an academic and a public Cloud platform. Results show that our approach can reproduce an equivalent execution environment of a predefined virtual machine image on both computing platforms

    Standing together for reproducibility in large-scale computing: report on reproducibility@XSEDE

    Get PDF
    This is the final report on reproducibility@xsede, a one-day workshop held in conjunction with XSEDE14, the annual conference of the Extreme Science and Engineering Discovery Environment (XSEDE). The workshop's discussion-oriented agenda focused on reproducibility in large-scale computational research. Two important themes capture the spirit of the workshop submissions and discussions: (1) organizational stakeholders, especially supercomputer centers, are in a unique position to promote, enable, and support reproducible research; and (2) individual researchers should conduct each experiment as though someone will replicate that experiment. Participants documented numerous issues, questions, technologies, practices, and potentially promising initiatives emerging from the discussion, but also highlighted four areas of particular interest to XSEDE: (1) documentation and training that promotes reproducible research; (2) system-level tools that provide build- and run-time information at the level of the individual job; (3) the need to model best practices in research collaborations involving XSEDE staff; and (4) continued work on gateways and related technologies. In addition, an intriguing question emerged from the day's interactions: would there be value in establishing an annual award for excellence in reproducible research? Overvie

    Towards Reproducibility in Scientific Workflows: An Infrastructure-Based Approach

    No full text
    It is commonly agreed that in silico scientific experiments should be executable and repeatable processes. Most of the current approaches for computational experiment conservation and reproducibility have focused so far on two of the main components of the experiment, namely, data and method. In this paper, we propose a new approach that addresses the third cornerstone of experimental reproducibility: the equipment. This work focuses on the equipment of a computational experiment, that is, the set of software and hardware components that are involved in the execution of a scientific workflow. In order to demonstrate the feasibility of our proposal, we describe a use case scenario on the Text Analytics domain and the application of our approach to it. From the original workflow, we document its execution environment, by means of a set of semantic models and a catalogue of resources, and generate an equivalent infrastructure for reexecuting it
    corecore