10 research outputs found

    Ligand-based design, synthesis, computational insights, and in vitro studies of novel N-(5-Nitrothiazol-2-yl)-carboxamido derivatives as potent inhibitors of SARS-CoV-2 main protease

    Get PDF
    The global outbreak of the COVID-19 pandemic provokes scientists to make a prompt development of new effective therapeutic interventions for the battle against SARS-CoV-2. A new series o

    A new isoflavone from Lomariopsis guineensis (Underw.) Alston

    Get PDF
    Aim/background: Lomariopsis guineensis (Underw.) Alston is an epiphytic climbing fern. It is widely distributed in Africa where it is also used in traditional medicine and as food. There are no previous reports of any constituents of the plant, hence this study to isolate any phytoconstituents. Method: The ethyl acetate extract of the leaves was subjected to column chromatography and isolated constituents were characterized using nuclear magnetic resonance and mass spectrometry. Results: Three compounds were isolated and identified as cycloartenol, pheophytin A and a new isoflavone (5, 7-dihydroxy-4′ methoxy-6,8-dimethylisoflavone). Conclusion: Three phytochemicals including a new isoflavone are reported from the plant for the first time

    Greenness assessment of chromatographic methods used for analysis of empagliflozin: a comparative study

    Get PDF
    The analytical chemistry community is attempting to incorporate green chemistry concepts in the development of analytical techniques to redefine analytical methods and dramatically modify the philosophy of analytical technique development. Each greenness assessment method has its own benefits and drawbacks, as well as its own procedures. The results of each greenness assessment method produce numerous deductions regarding the selection of a greenest chromatographic method on which the determination of a greenness assessment tool depends. The current study examined the greenness behavior of 26 reported chromatographic methods in the literature for the evaluation of the medicine empagliflozin using three evaluation methods: the national environmental methods index (NEMI), the eco-scale assessment (ESA), and the green analytical procedure index (GAPI). This comparative study discussed the value of using more than one greenness evaluation methods while evaluating. The findings showed that the NEMI was a less informative and misleading tool. However, the ESA provided reliable numerical assessments out of 100. Despite the GAPI being a complex assessment compared to the others, it provided a fully descriptive three-colored pictogram and a precise assessment. The findings recommended applying more than one greenness assessment tool to evaluate the greenness of methods prior to planning laboratory-based analytical methods to ensure an environment friendly process

    Evaluation of bi-lateral co-infections and antibiotic resistance rates among COVID-19 patients

    Get PDF
    In addition to the pathogenesis of SARS-CoV-2, bacterial co-infection plays an essential role in the incidence and progression of SARS-CoV-2 infections by increasing the severity of infection, as well as increasing disease symptoms, death rate and antimicrobial resistance (AMR). The current study was conducted in a tertiary-care hospital in Lahore, Pakistan, among hospitalized COVID-19 patients to see the prevalence of bacterial co-infections and the AMR rates among different isolated bacteria. Clinical samples for the laboratory diagnosis were collected from 1165 hospitalized COVID-19 patients, of which 423 were found to be positive for various bacterial infections. Most of the isolated bacteria were Gram-negative rods (n = 366), followed by Gram-positive cocci (n = 57). A significant association (p 50% of COVID-19 patients were fever, fatigue, dyspnea and chest pain with a significant association (p < 0.05) in bacterial co-infected patients. The current study results showed a comparatively high prevalence of AMR, which may become a severe health-related issue in the future. Therefore, strict compliance of antibiotic usage and employment of antibiotic stewardship programs at every public or private institutional level are recommended

    Synthesis, full chemical characterisation and development of validated methods for the quantification of (±)-4′-methylmethcathinone (mephedrone) : a new "legal high"

    No full text
    The recent global increase in the abuse of 4'-methylmethcathinone and related compounds has developed a requirement for full chemical characterisation of these products. In this work we present full synthetic and chemical characterisation data and supplemental information for mephedrone synthesised as both the hydrobromide and hydrochloride salt. Additionally we report the first fully validated chromatographic methods for the detection and quantitative analysis of the substance both in its pure form and in the presence of a number of common adulterants used in illicit drug manufacture

    The role of blood groups, vaccine type and gender in predicting the severity of side effects among university students receiving COVID-19 vaccines

    No full text
    Abstract On March 11th, 2020, the World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) a pandemic. To control the pandemic, billions of vaccine doses have been administered worldwide. Predictors of COVID-19 vaccine-related side effects are inconsistently described in the literature. This study aimed to identify the predictors of side effects’ severity after COVID-19 vaccination among young adult students at Taif University (TU) in Saudi Arabia. An online, anonymous questionnaire was used. Descriptive statistics were calculated for numerical and categorical variables. Possible correlations with other characteristics were identified using the chi-square test. The study included 760 young adult participants from TU. Pain at the injection site (54.7%), headache (45.0%), lethargy and fatigue (43.3%), and fever (37.5%) were the most frequently reported COVID-19 vaccine-related side effects after the first dose. The most frequent side effects were reported among the 20–25-year-old age group for all doses of all vaccines. Females experienced remarkably more side effects after the second (p < 0.001) and third doses (p = 0.002). Moreover, ABO blood groups significantly correlated with vaccine-related side effects after the second dose (p = 0.020). The participants' general health status correlated with the side effects after the first and second doses (p < 0.001 and 0.022, respectively). The predictors of COVID-19 vaccine-related side effects in young, vaccinated people were blood group B, female gender, vaccine type, and poor health status

    Synthesis, DFT Analyses, Antiproliferative Activity, and Molecular Docking Studies of Curcumin Analogues

    No full text
    With 19.3 million new cases and almost 10 million deaths in 2020, cancer has become a leading cause of death today. Curcumin and its analogues were found to have promising anticancer activity. Inspired by curcumin’s promising anticancer activity, we prepared three semi-synthetic analogues by chemically modifying the diketone function of curcumin to its pyrazole counterpart. The curcumin analogues (3a–c) were synthesized by two different methods, followed by their DFT analyses to study the HOMO/LUMO configuration to access the stability of compounds (∆E = 3.55 to 3.35 eV). The curcumin analogues (3a–c) were tested for antiproliferative activity against a total of five dozen cancer cell lines in a single (10 µM) and five dose (0.001 to 100 µM) assays. 3,5-Bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(phenoxy)ethanone (3b) and 3,5-bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(2,4-dichlorophenoxy)ethanone (3c) demonstrated the most promising antiproliferative activity against the cancer cell lines with growth inhibitions of 92.41% and 87.28%, respectively, in a high single dose of 10 µM and exhibited good antiproliferative activity (%GIs > 68%) against 54 out of 56 cancer cell lines and 54 out of 60 cell lines, respectively. The compound 3b and 3c demonstrated the most potent antiproliferative activity in a 5-dose assay with GI50 values ranging between 0.281 and 5.59 µM and 0.39 and 0.196 and 3.07 µM, respectively. The compound 3b demonstrated moderate selectivity against a leukemia panel with a selectivity ratio of 4.59. The HOMO-LUMO energy-gap (∆E) of the compounds in the order of 3a > 3b > 3c, was found to be in harmony with the anticancer activity in the order of 3c ≥ 3b > 3a. Following that, all of the curcumin analogues were molecular docked against EGFR, one of the most appealing targets for antiproliferative activity. In a molecular docking simulation, the ligand 3b exhibited three different types of interactions: H-bond, π-π-stacking and π-cationic. The ligand 3b displayed three H-bonds with the residues Met793 (with methoxy group), Lys875 (with phenolic group) and Asp855 (with methoxy group). The π-π-stacking interaction was observed between the phenyl (of phenoxy) and the residue Phe997, while π-cationic interaction was displayed between the phenyl (of curcumin) and the residue Arg841. Similarly, the ligand 3c displayed five H-bonds with the residue Met793 (with methoxy and phenolic groups), Lys845 (methoxy group), Cys797 (phenoxy oxygen), and Asp855 (phenolic group), as well as a halogen bond with residue Cys797 (chloro group). Furthermore, all the compound 3a–c demonstrated significant binding affinity (−6.003 to −7.957 kcal/mol) against the active site of EGFR. The curcumin analogues described in the current work might offer beneficial therapeutic intervention for the treatment and prevention of cancer. Future anticancer drug discovery programs can be expedited by further modifying these analogues to create new compounds with powerful anticancer potentials

    Screening of Some Sulfonamide and Sulfonylurea Derivatives as Anti-Alzheimer’s Agents Targeting BACE1 and PPARγ

    No full text
    In the last few decades, Alzheimer’s disease (AD) has emerged as a serious global problem, and it has been considered as the most common type of dementia. PPARγ and beta-secretase 1 (BACE1) are considered as potential targets for Alzheimer’s disease management. In the same time, sulfonylureas and sulfonamides have been confirmed to have PPARγ agonistic activity. Aiming to obtain new anti-AD agents, thirty-five compounds of sulfonamide and sulfonylurea derivatives having the same essential pharmacophoric features of the reported PPARγ agonists have been subjected to virtual screening. Docking studies revealed that five compounds (1, 2, 3, 4, and 5) have promising affinities to PPARγ. They were also docked into the binding site of BACE1. In addition, ADMET and physicochemical properties of these compounds were considered. Additionally, these compounds were further evaluated against BACE1 and PPARγ. Compound 2 showed IC50 value of 1.64 μM against BACE1 and EC50 value of 0.289 μM against PPARγ

    Isolation, Characterization and Anticancer Activity of Two Bioactive Compounds from <i>Arisaema flavum</i> (Forssk.) Schott

    No full text
    Medicinal plants play important role in the public health sector worldwide. Natural products from medicinal plants are sources of unlimited opportunities for new drug leads because of their unique chemical diversity. Researchers have focused on exploring herbal products as potential sources for the treatment of cancer, cardiac and infectious diseases. Arisaema flavum (Forssk.) is an important medicinal plant found in the northwest Himalayan regions of Pakistan. It is a poisonous plant and is used as a remedy against snake bites and scorpion stings. In this study, two bioactive compounds were isolated from Arisaema flavum (Forssk.) and their anticancer activity was evaluated against human breast cancer cell line MCF-7 using an MTT assay. The crude extract of Arisaema flavum (Forssk.) was subjected to fractionation using different organic solvents in increasing order of polarity. The fraction indicating maximum activity was then taken for isolation of bioactive compounds using various chromatographic and spectroscopic techniques such as column chromatography, thin-layer chromatography (TLC), gas chromatography–mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Crude extract of Arisaema flavum (Forssk.), as well as various fractions extracted in different solvents such as n-hexane, chloroform and ethyl acetate, were tested against human breast cancer cell line MCF-7 using an MTT assay. The crude extract exhibited significant dose-dependent anticancer activity with a maximum activity of 78.6% at 500 µg/mL concentration. Two compounds, hexadecanoic acid ethyl ester with molecular formula C18H36O7 and molar mass 284 and 5-Oxo-19 propyl-docosanoic acid methyl ester with molecular formula C26H50O3 and molecular mass 410, were isolated from chloroform fraction. These compounds were tested against the MCF-7cell line for cytotoxic activity and exhibited a significant (p 50 of 25 µM after 48 h of treatment. Results indicated that Arisaema flavum (Forssk.) possesses compounds with cytotoxic activity that can further be exploited to develop anticancer formulations

    Tailoring of Rosuvastatin Calcium and Atenolol Bilayer Tablets for the Management of Hyperlipidemia Associated with Hypertension: A Preclinical Study

    No full text
    Hyperlipidemia is still the leading cause of heart disease in patients with hypertension. The purpose of this study is to make rosuvastatin calcium (ROS) and atenolol (AT) bilayer tablets to treat coexisting dyslipidemia and hypertension with a single product. ROS was chosen for the immediate-release layer of the constructed tablets, whereas AT was chosen for the sustained-release layer. The solid dispersion of ROS with sorbitol (1:3 w/w) was utilized in the immediate-release layer while hydroxypropyl methylcellulose (HPMC), ethylcellulose (EC), and sodium bicarbonate were incorporated into the floating sustained-release layer. The concentrations of HPMC and EC were optimized by employing 32 full factorial designs to sustain AT release. The bilayer tablets were prepared by the direct compression method. The immediate-release layer revealed that 92.34 &plusmn; 2.27% of ROS was released within 60 min at a pH of 1.2. The second sustained-release layer of the bilayer tablets exhibited delayed release of AT (96.65 &plusmn; 3.36% within 12 h) under the same conditions. The release of ROS and AT from the prepared tablets was found to obey the non-Fickian diffusion and mixed models (zero-order, Higuchi and Korsmeyer&ndash;Peppas), respectively. Preclinical studies using rabbit models investigated the impact of ROS/AT tablets on lipid profiles and blood pressure. A high-fat diet was used to induce obesity in rabbits. Bilayer ROS/AT tablets had a remarkable effect on decreasing the lipid profiles, slowing weight gain, and lowering blood pressure to normal levels when compared to the control group
    corecore