138 research outputs found

    Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip

    Get PDF
    Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, non-fault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a Silicon quantum photonic device. The approach is verified to be well suited for pre-threshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed

    Improved precision scaling for simulating coupled quantum-classical dynamics

    Full text link
    We present a super-polynomial improvement in the precision scaling of quantum simulations for coupled classical-quantum systems in this paper. Such systems are found, for example, in molecular dynamics simulations within the Born-Oppenheimer approximation. By employing a framework based on the Koopman-von Neumann formalism, we express the Liouville equation of motion as unitary dynamics and utilize phase kickback from a dynamical quantum simulation to calculate the quantum forces acting on classical particles. This approach allows us to simulate the dynamics of these particles without the overheads associated with measuring gradients and solving the equations of motion on a classical computer, resulting in a super-polynomial advantage at the price of increased space complexity. We demonstrate that these simulations can be performed in both microcanonical and canonical ensembles, enabling the estimation of thermodynamic properties from the prepared probability density.Comment: 19 + 51 page

    Amplified Amplitude Estimation: Exploiting Prior Knowledge to Improve Estimates of Expectation Values

    Full text link
    We provide a method for estimating the expectation value of an operator that can utilize prior knowledge to accelerate the learning process on a quantum computer. Specifically, suppose we have an operator that can be expressed as a concise sum of projectors whose expectation values we know a priori to be O(ϵ)O(\epsilon). In that case, we can estimate the expectation value of the entire operator within error ϵ\epsilon using a number of quantum operations that scales as O(1/ϵ)O(1/\sqrt{\epsilon}). We then show how this can be used to reduce the cost of learning a potential energy surface in quantum chemistry applications by exploiting information gained from the energy at nearby points. Furthermore, we show, using Newton-Cotes methods, how these ideas can be exploited to learn the energy via integration of derivatives that we can estimate using a priori knowledge. This allows us to reduce the cost of energy estimation if the block-encodings of directional derivative operators have a smaller normalization constant than the Hamiltonian of the system.Comment: 23 pages, v2: additional explanations to clarify the assumptions and result

    Scheme for Universal High-Dimensional Quantum Computation with Linear Optics

    Get PDF
    Photons are natural carriers of high-dimensional quantum information, and, in principle, can benefit from higher quantum information capacity and noise-resilience. However, schemes to generate the resources required for high-dimensional quantum computing have so far been lacking in linear optics. Here, we show how to generate GHZ states in arbitrary dimensions and numbers of photons using linear optical circuits described by Fourier transform matrices. Combining our results with recent schemes for qudit Bell measurements, we show that universal linear optical quantum computing can be performed in arbitrary dimensions

    Generation and sampling of quantum states of light in a silicon chip

    Get PDF
    Implementing large instances of quantum algorithms requires the processing of many quantum information carriers in a hardware platform that supports the integration of different components. While established semiconductor fabrication processes can integrate many photonic components, the generation and algorithmic processing of many photons has been a bottleneck in integrated photonics. Here we report the on-chip generation and processing of quantum states of light with up to eight photons in quantum sampling algorithms. Switching between different optical pumping regimes, we implement the Scattershot, Gaussian and standard boson sampling protocols in the same silicon chip, which integrates linear and nonlinear photonic circuitry. We use these results to benchmark a quantum algorithm for calculating molecular vibronic spectra. Our techniques can be readily scaled for the on-chip implementation of specialised quantum algorithms with tens of photons, pointing the way to efficiency advantages over conventional computers

    Active Temporal Multiplexing of Photons

    Get PDF
    Photonic qubits constitute a leading platform to disruptive quantum technologies due to their unique low-noise properties. The cost of the photonic approach is the non-deterministic nature of many of the processes, including single-photon generation, which arises from parametric sources and negligible interaction between photons. Active temporal multiplexing - repeating a generation process in time and rerouting to single modes using an optical switching network - is a promising approach to overcome this challenge and will likely be essential for large-scale applications with greatly reduced resource complexity and system sizes. Requirements include the precise synchronization of a system of low-loss switches, delay lines, fast photon detectors, and feed-forward. Here we demonstrate temporal multiplexing of 8 'bins' from a double-passed heralded photon source and observe an increase in the heralding and heralded photon rates. This system points the way to harnessing temporal multiplexing in quantum technologies, from single-photon sources to large-scale computation.Comment: Minor revision

    Qubit entanglement between ring-resonator photon-pair sources on a silicon chip

    Get PDF
    Entanglement—one of the most delicate phenomena in nature—is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale
    corecore