12 research outputs found

    Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits

    Full text link
    [EN] Transcriptomic analysis showed nineteen potential biomarkers in ovarian tissue from females belonged to a rabbit line selected for ovulation rate for 10 generations and the control line. These females differed not only in ovulation rate but also in prenatal survival since similar litter size were observed. Litter size is an essential trait in rabbit meat production but with low heritability. A selection experiment for ovulation rate has been performed for 10 generations to improve litter size in rabbits. The selected line increased two ova more than the control line but nevertheless a negative correlation was observed with prenatal survival. A transcriptomic study was performed, using microarrays, in ovarian tissue from females belonging to the selected line and the control line. Our results showed 1357 differential expressed genes and nineteen potential biomarkers associated with prenatal mortality, which could explain differences between litter size in rabbits. Cell death was the most relevant process.This research was supported by MEC (AGL2014-55921-C2-1-P) and Generalitat Valenciana (Prometeo 2009/125).Serna-García, M.; Peiró Barber, RM.; Serna, E.; Santacreu Jerez, MA. (2020). Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits. Animals. 10(10):1-11. https://doi.org/10.3390/ani10101924S1111010Laborda, P., Mocé, M. L., Blasco, A., & Santacreu, M. A. (2012). Selection for ovulation rate in rabbits: Genetic parameters and correlated responses on survival rates1. Journal of Animal Science, 90(2), 439-446. doi:10.2527/jas.2011-4219Laborda, P., Mocé, M. L., Santacreu, M. A., & Blasco, A. (2011). Selection for ovulation rate in rabbits: Genetic parameters, direct response, and correlated response on litter size1. Journal of Animal Science, 89(10), 2981-2987. doi:10.2527/jas.2011-3906Laborda, P., Santacreu, M. A., Blasco, A., & Mocé, M. L. (2012). Selection for ovulation rate in rabbits: Direct and correlated responses estimated with a cryopreserved control population1. Journal of Animal Science, 90(10), 3392-3397. doi:10.2527/jas.2011-4837Cunningham, P. J., England, M. E., Young, L. D., & Zimmerman, D. R. (1979). Selection for Ovulation Rate in Swine: Correlated Response in Litter Size and Weight. Journal of Animal Science, 48(3), 509-516. doi:10.2527/jas1979.483509xRosendo, A., Druet, T., Gogué, J., & Bidanel, J. P. (2007). Direct responses to six generations of selection for ovulation rate or prenatal survival in Large White pigs. Journal of Animal Science, 85(2), 356-364. doi:10.2527/jas.2006-507Johnson, R. K., Zimmerman, D. R., & Kittok, R. J. (1984). Selection for components of reproduction in swine. Livestock Production Science, 11(6), 541-558. doi:10.1016/0301-6226(84)90070-8Rodrigues, P., Limback, D., McGinnis, L. K., Plancha, C. E., & Albertini, D. F. (2008). Oogenesis: Prospects and challenges for the future. Journal of Cellular Physiology, 216(2), 355-365. doi:10.1002/jcp.21473Cartuche, L., Pascual, M., Gómez, E. A., & Blasco, A. (2014). Economic weights in rabbit meat production. World Rabbit Science, 22(3), 165. doi:10.4995/wrs.2014.1747Zuelke, K. A., Jeffay, S. C., Zucker, R. M., & Perreault, S. D. (2002). Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Molecular Reproduction and Development, 64(1), 106-112. doi:10.1002/mrd.10214Tiwari, M., Prasad, S., Tripathi, A., Pandey, A. N., Ali, I., Singh, A. K., … Chaube, S. K. (2015). Apoptosis in mammalian oocytes: a review. Apoptosis, 20(8), 1019-1025. doi:10.1007/s10495-015-1136-yGerritsen, M. E., & Wagner, G. F. (2005). Stanniocalcin: No Longer Just a Fish Tale. Vitamins & Hormones, 105-135. doi:10.1016/s0083-6729(05)70004-2Jepsen, M. R., Kløverpris, S., Bøtkjær, J. A., Wissing, M. L., Andersen, C. Y., & Oxvig, C. (2016). The proteolytic activity of pregnancy-associated plasma protein-A is potentially regulated by stanniocalcin-1 and -2 during human ovarian follicle development. Human Reproduction, 31(4), 866-874. doi:10.1093/humrep/dew013Darcy, C. J., Davis, J. S., Woodberry, T., McNeil, Y. R., Stephens, D. P., Yeo, T. W., & Anstey, N. M. (2011). An Observational Cohort Study of the Kynurenine to Tryptophan Ratio in Sepsis: Association with Impaired Immune and Microvascular Function. PLoS ONE, 6(6), e21185. doi:10.1371/journal.pone.0021185Wirthgen, E., Tuchscherer, M., Otten, W., Domanska, G., Wollenhaupt, K., Tuchscherer, A., & Kanitz, E. (2013). Activation of indoleamine 2,3-dioxygenase by LPS in a porcine model. Innate Immunity, 20(1), 30-39. doi:10.1177/1753425913481252Mohib, K., Guan, Q., Diao, H., Du, C., & Jevnikar, A. M. (2007). Proapoptotic activity of indoleamine 2,3-dioxygenase expressed in renal tubular epithelial cells. American Journal of Physiology-Renal Physiology, 293(3), F801-F812. doi:10.1152/ajprenal.00044.2007Fallarino, F., Grohmann, U., Vacca, C., Bianchi, R., Orabona, C., Spreca, A., … Puccetti, P. (2002). T cell apoptosis by tryptophan catabolism. Cell Death & Differentiation, 9(10), 1069-1077. doi:10.1038/sj.cdd.4401073Wang, Q., Zhang, M., Ding, Y., Wang, Q., Zhang, W., Song, P., & Zou, M.-H. (2014). Activation of NAD(P)H Oxidase by Tryptophan-Derived 3-Hydroxykynurenine Accelerates Endothelial Apoptosis and Dysfunction In Vivo. Circulation Research, 114(3), 480-492. doi:10.1161/circresaha.114.302113Li, F., Zhang, R., Li, S., & Liu, J. (2017). IDO1: An important immunotherapy target in cancer treatment. International Immunopharmacology, 47, 70-77. doi:10.1016/j.intimp.2017.03.024Hill, M., Pereira, V., Chauveau, C., Zagani, R., Remy, S., Tesson, L., … Anegon, I. (2005). Heme oxygenase‐1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3‐dioxygenase. The FASEB Journal, 19(14), 1957-1968. doi:10.1096/fj.05-3875comLieuallen, K. (2001). Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Human Molecular Genetics, 10(18), 1867-1871. doi:10.1093/hmg/10.18.1867Pajaniappan, M., Glober, N. K., Kennard, S., Liu, H., Zhao, N., & Lilly, B. (2011). Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling. American Journal of Physiology-Heart and Circulatory Physiology, 301(3), H784-H793. doi:10.1152/ajpheart.00116.2011Duffy, D. M., Ko, C., Jo, M., Brannstrom, M., & Curry, T. E. (2018). Ovulation: Parallels With Inflammatory Processes. Endocrine Reviews, 40(2), 369-416. doi:10.1210/er.2018-00075LIU, C., LIU, Y., LIU, Y., WU, D., LUAN, Z., WANG, E., & YU, B. (2013). Ser 15 of WEE1B is a potential PKA phosphorylation target in G2/M transition in one-cell stage mouse embryos. Molecular Medicine Reports, 7(6), 1929-1937. doi:10.3892/mmr.2013.1437Han, S. J., Chen, R., Paronetto, M. P., & Conti, M. (2005). Wee1B Is an Oocyte-Specific Kinase Involved in the Control of Meiotic Arrest in the Mouse. Current Biology, 15(18), 1670-1676. doi:10.1016/j.cub.2005.07.056Nakanishi, M., Ando, H., Watanabe, N., Kitamura, K., Ito, K., Okayama, H., … Sasaki, M. (2000). Identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. Genes to Cells, 5(10), 839-847. doi:10.1046/j.1365-2443.2000.00367.xOh, J. S., Susor, A., & Conti, M. (2011). Protein Tyrosine Kinase Wee1B Is Essential for Metaphase II Exit in Mouse Oocytes. Science, 332(6028), 462-465. doi:10.1126/science.1199211Castedo, M., Perfettini, J.-L., Roumier, T., & Kroemer, G. (2002). Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death & Differentiation, 9(12), 1287-1293. doi:10.1038/sj.cdd.4401130Golsteyn, R. M. (2005). Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Letters, 217(2), 129-138. doi:10.1016/j.canlet.2004.08.005Gu, L., Zheng, H., Murray, S. A., Ying, H., & Jim Xiao, Z.-X. (2003). Deregulation of Cdc2 kinase induces caspase-3 activation and apoptosis. Biochemical and Biophysical Research Communications, 302(2), 384-391. doi:10.1016/s0006-291x(03)00189-xSandal, T., Stapnes, C., Kleivdal, H., Hedin, L., & Døskeland, S. O. (2002). A Novel, Extraneuronal Role for Cyclin-dependent Protein Kinase 5 (CDK5). Journal of Biological Chemistry, 277(23), 20783-20793. doi:10.1074/jbc.m112248200Oh, J. S., Susor, A., Schindler, K., Schultz, R. M., & Conti, M. (2013). Cdc25A activity is required for the metaphase II arrest in mouse oocytes. Journal of Cell Science. doi:10.1242/jcs.115592Orciani, M., Trubiani, O., Guarnieri, S., Ferrero, E., & Di Primio, R. (2008). CD38 is constitutively expressed in the nucleus of human hematopoietic cells. Journal of Cellular Biochemistry, 105(3), 905-912. doi:10.1002/jcb.21887Partidá-Sánchez, S., Rivero-Nava, L., Shi, G., & Lund, F. E. (s. f.). CD38: An Ecto-Enzyme at the Crossroads of Innate and Adaptive Immune Responses. Crossroads between Innate and Adaptive Immunity, 171-183. doi:10.1007/978-0-387-34814-8_12Wang, L.-F., Miao, L.-J., Wang, X.-N., Huang, C.-C., Qian, Y.-S., Huang, X., … Xin, H.-B. (2017). CD38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/PPARγ signaling pathway. Journal of Cellular and Molecular Medicine, 22(1), 101-110. doi:10.1111/jcmm.13297Sun, L., Iqbal, J., Zaidi, S., Zhu, L.-L., Zhang, X., Peng, Y., … Zaidi, M. (2006). Structure and functional regulation of the CD38 promoter. Biochemical and Biophysical Research Communications, 341(3), 804-809. doi:10.1016/j.bbrc.2006.01.033Uche, U. U., Piccirillo, A. R., Kataoka, S., Grebinoski, S. J., D’Cruz, L. M., & Kane, L. P. (2018). PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. Journal of Experimental Medicine, 215(12), 3165-3179. doi:10.1084/jem.20172018Chu, K. Y., Li, H., Wada, K., & Johnson, J. D. (2011). Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions. Diabetologia, 55(1), 128-140. doi:10.1007/s00125-011-2323-1Xiang, T., Li, L., Yin, X., Yuan, C., Tan, C., Su, X., … Tao, Q. (2012). The Ubiquitin Peptidase UCHL1 Induces G0/G1 Cell Cycle Arrest and Apoptosis Through Stabilizing p53 and Is Frequently Silenced in Breast Cancer. PLoS ONE, 7(1), e29783. doi:10.1371/journal.pone.0029783Kabuta, T., Mitsui, T., Takahashi, M., Fujiwara, Y., Kabuta, C., Konya, C., … Wada, K. (2013). Ubiquitin C-terminal Hydrolase L1 (UCH-L1) Acts as a Novel Potentiator of Cyclin-dependent Kinases to Enhance Cell Proliferation Independently of Its Hydrolase Activity. Journal of Biological Chemistry, 288(18), 12615-12626. doi:10.1074/jbc.m112.435701Koyanagi, S., Hamasaki, H., Sekiguchi, S., Hara, K., Ishii, Y., Kyuwa, S., & Yoshikawa, Y. (2012). Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova. REPRODUCTION, 143(3), 271-279. doi:10.1530/rep-11-0128Yao, Y.-W., Shi, Y., Jia, Z.-F., Jiang, Y.-H., Gu, Z., Wang, J., … Sun, Z.-G. (2011). PTOV1 is associated with UCH-L1 and in response to estrogen stimuli during the mouse oocyte development. Histochemistry and Cell Biology, 136(2), 205-215. doi:10.1007/s00418-011-0825-zBoelte, K. C., Gordy, L. E., Joyce, S., Thompson, M. A., Yang, L., & Lin, P. C. (2011). Rgs2 Mediates Pro-Angiogenic Function of Myeloid Derived Suppressor Cells in the Tumor Microenvironment via Upregulation of MCP-1. PLoS ONE, 6(4), e18534. doi:10.1371/journal.pone.0018534Schwameis, M., Blann, A., Mannhalter, C., Jilma, B., & Siller-Matula, J. (2011). Thrombin as a multi-functional enzyme. Thrombosis and Haemostasis, 106(12), 1020-1033. doi:10.1160/th10-11-0711Van Blerkom, J., Antczak, M., & Schrader, R. (1997). The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Human Reproduction, 12(5), 1047-1055. doi:10.1093/humrep/12.5.1047Richards, J. S., Liu, Z., Kawai, T., Tabata, K., Watanabe, H., Suresh, D., … Shimada, M. (2012). Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertility and Sterility, 98(2), 471-479.e1. doi:10.1016/j.fertnstert.2012.04.050Lagaly, D. V., Aad, P. Y., Grado-Ahuir, J. A., Hulsey, L. B., & Spicer, L. J. (2008). Role of adiponectin in regulating ovarian theca and granulosa cell function. Molecular and Cellular Endocrinology, 284(1-2), 38-45. doi:10.1016/j.mce.2008.01.007Palin, M.-F., Bordignon, V. V., & Murphy, B. D. (2012). Adiponectin and the Control of Female Reproductive Functions. Vitamins & Hormones, 239-287. doi:10.1016/b978-0-12-398313-8.00010-5Wickham, E. P., Tao, T., Nestler, J. E., & McGee, E. A. (2013). Activation of the LH receptor up regulates the type 2 adiponectin receptor in human granulosa cells. Journal of Assisted Reproduction and Genetics, 30(7), 963-968. doi:10.1007/s10815-013-0012-3Chappaz, E., Albornoz, M. S., Campos, D., Che, L., Palin, M.-F., Murphy, B. D., & Bordignon, V. (2008). Adiponectin enhances in vitro development of swine embryos. Domestic Animal Endocrinology, 35(2), 198-207. doi:10.1016/j.domaniend.2008.05.007Elis, S., Coyral-Castel, S., Freret, S., Cognié, J., Desmarchais, A., Fatet, A., … Dupont, J. (2013). Expression of adipokine and lipid metabolism genes in adipose tissue of dairy cows differing in a female fertility quantitative trait locus. Journal of Dairy Science, 96(12), 7591-7602. doi:10.3168/jds.2013-6615Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. Journal of Cell Science, 121(6), 737-746. doi:10.1242/jcs.026096Arslanoglu, S., Bertino, E., Tonetto, P., De Nisi, G., Ambruzzi, A. M., Biasini, A., … Moro, G. E. (2010). Guidelines for the establishment and operation of a donor human milk bank. The Journal of Maternal-Fetal & Neonatal Medicine, 23(sup2), 1-20. doi:10.3109/14767058.2010.512414LIN, C.-T., LIN, Y.-T., & KUO, T.-F. (2007). Investigation of mRNA Expression for Secreted Frizzled-Related Protein 2 (sFRP2) in Chick Embryos. Journal of Reproduction and Development, 53(4), 801-810. doi:10.1262/jrd.18081Jaatinen, R., Bondestam, J., Raivio, T., Hildén, K., Dunkel, L., Groome, N., & Ritvos, O. (2002). Activation of the Bone Morphogenetic Protein Signaling Pathway Induces Inhibin βB-Subunit mRNA and Secreted Inhibin B Levels in Cultured Human Granulosa-Luteal Cells. The Journal of Clinical Endocrinology & Metabolism, 87(3), 1254-1261. doi:10.1210/jcem.87.3.8314De Gottardi, A., Dumonceau, J.-M., Bruttin, F., Vonlaufen, A., Morard, I., Spahr, L., … Hadengue, A. (2006). Molecular Cancer, 5(1), 48. doi:10.1186/1476-4598-5-48LUTWAK-MANN, C. (1955). CARBONIC ANHYDRASE IN THE FEMALE REPRODUCTIVE TRACT. OCCURRENCE, DISTRIBUTION AND HORMONAL DEPENDENCE. Journal of Endocrinology, 13(1), 26-38. doi:10.1677/joe.0.013002

    Correlated responses on litter size traits and survival traits after two-stage selection for ovulation rate and litter size in rabbits

    Full text link
    [EN] Farmer profit depends on the number of slaughter rabbits. The improvement of litter size (LS) at birth by two-stage selection for ovulation rate (OR) and LS could modify survival rate from birth to slaughter. This study was aiming to estimate direct and correlated response on LS traits and peri- and postnatal survival traits in the OR_LS rabbit line selected first only for OR (first period) and then for OR and LS using independent culling levels (second period). The studied traits were OR, LS measured as number of total born, number of kits born alive (NBA) and dead (NBD), and number of kits at weaning (NW) and young rabbits at slaughter (NS). Prenatal survival (LS/OR) and survival at birth (NBA/LS), at weaning (NW/NBA) and at slaughter (NS/NW) were also studied. Data were analysed using Bayesian inference methods. Heritability for LS traits were low, 0.07 for NBA, NW and NS. Survival traits had low values of heritability 0.07, 0.03 and 0.03 for NBA/LS, NW/NBA and NS/NW, respectively. After six generations of selection by OR (first period), a small increase in NBD and a slight decrease in NBA/LS were found. However, no correlated responses on NW/NBA and NS/NW were observed. After 11 generations of two-stage selection for OR and LS (second period), correlated responses on NBA, NW and NS were 0.12, 0.12 and 0.11 kits per generation, respectively, whereas no substantial modifications on NBA/LS, NW/NBA and NS/NW were found. In conclusion, two-stage selection improves the number of young rabbits at slaughter without modifying survival from birth to slaughter.This study was supported by the Ministerio de Economia y Competitividad (AGL2014-55921-C2-1-P) and by funds from Generalitat Valenciana research programme (Prometeo 2009/125). A.Y.B. was supported by a grant of the Egyptian Ministry of Higher Education.Badawy Elmoghazy, AY.; Peiró Barber, RM.; Blasco Mateu, A.; Santacreu Jerez, MA. (2019). Correlated responses on litter size traits and survival traits after two-stage selection for ovulation rate and litter size in rabbits. Animal. 13(3):453-459. https://doi.org/10.1017/S1751731118002033S453459133Ziadi, C., Mocé, M. L., Laborda, P., Blasco, A., & Santacreu, M. A. (2013). Genetic selection for ovulation rate and litter size in rabbits: Estimation of genetic parameters and direct and correlated responses1. Journal of Animal Science, 91(7), 3113-3120. doi:10.2527/jas.2012-6043Su, G., Lund, M. S., & Sorensen, D. (2007). Selection for litter size at day five to improve litter size at weaning and piglet survival rate1. Journal of Animal Science, 85(6), 1385-1392. doi:10.2527/jas.2006-631Ruíz-Flores, A., & Johnson, R. K. (2001). Direct and correlated responses to two-stage selection for ovulation rate and number of fully formed pigs at birth in swine. Journal of Animal Science, 79(9), 2286. doi:10.2527/2001.7992286xRosendo, A., Druet, T., Gogué, J., Canario, L., & Bidanel, J. P. (2007). Correlated responses for litter traits to six generations of selection for ovulation rate or prenatal survival in French Large White pigs. Journal of Animal Science, 85(7), 1615-1624. doi:10.2527/jas.2006-690Ragab, M., & Baselga, M. (2011). A comparison of reproductive traits of four maternal lines of rabbits selected for litter size at weaning and founded on different criteria. Livestock Science, 136(2-3), 201-206. doi:10.1016/j.livsci.2010.09.009Nielsen, B., Su, G., Lund, M. S., & Madsen, P. (2013). Selection for increased number of piglets at d 5 after farrowing has increased litter size and reduced piglet mortality1. Journal of Animal Science, 91(6), 2575-2582. doi:10.2527/jas.2012-5990Lents, C. A., Cushman, R. A., & Freking, B. A. (2014). Measures of the ovaries and uterus during development of gilts selected for differences in uterine capacity1,2. Journal of Animal Science, 92(6), 2433-2439. doi:10.2527/jas.2013-7205Legarra A , Varona L and López de Maturana E. 2008. Program TM. Retrieved on 6 September 2017 from http://snp.toulouse.inra. fr/~alegarra/Lamberson, W. R., Johnson, R. K., Zimmerman, D. R., & Long, T. E. (1991). Direct responses to selection for increased litter size, decreased age at puberty, or random selection following selection for ovulation rate in swine. Journal of Animal Science, 69(8), 3129. doi:10.2527/1991.6983129xLaborda, P., Mocé, M. L., Santacreu, M. A., & Blasco, A. (2011). Selection for ovulation rate in rabbits: Genetic parameters, direct response, and correlated response on litter size1. Journal of Animal Science, 89(10), 2981-2987. doi:10.2527/jas.2011-3906Kapell, D. N. R. G., Ashworth, C. J., Knap, P. W., & Roehe, R. (2011). Genetic parameters for piglet survival, litter size and birth weight or its variation within litter in sire and dam lines using Bayesian analysis. Livestock Science, 135(2-3), 215-224. doi:10.1016/j.livsci.2010.07.005Johnson, R. K., Nielsen, M. K., & Casey, D. S. (1999). Responses in ovulation rate, embryonal survival, and litter traits in swine to 14 generations of selection to increase litter size. Journal of Animal Science, 77(3), 541. doi:10.2527/1999.773541xBlasco, A. (2017). Bayesian Data Analysis for Animal Scientists. doi:10.1007/978-3-319-54274-4Argente, M. J., Santacreu, M. A., Climent, A., & Blasco, A. (2006). Influence of available uterine space per fetus on fetal development and prenatal survival in rabbits selected for uterine capacity. Livestock Science, 102(1-2), 83-91. doi:10.1016/j.livprodsci.2005.11.022Laborda, P., Santacreu, M. A., Blasco, A., & Mocé, M. L. (2012). Selection for ovulation rate in rabbits: Direct and correlated responses estimated with a cryopreserved control population1. Journal of Animal Science, 90(10), 3392-3397. doi:10.2527/jas.2011-4837Arango, J., Misztal, I., Tsuruta, S., Culbertson, M., & Herring, W. (2005). Threshold-linear estimation of genetic parameters for farrowing mortality, litter size, and test performance of Large White sows. Journal of Animal Science, 83(3), 499-506. doi:10.2527/2005.833499xPeiró, R., Herrler, A., Santacreu, M. A., Merchán, M., Argente, M. J., García, M. L., … Blasco, A. (2010). Expression of progesterone receptor related to the polymorphism in the PGR gene in the rabbit reproductive tract1. Journal of Animal Science, 88(2), 421-427. doi:10.2527/jas.2009-1955Cartuche, L., Pascual, M., Gómez, E. A., & Blasco, A. (2014). Economic weights in rabbit meat production. World Rabbit Science, 22(3), 165. doi:10.4995/wrs.2014.1747Putz, A. M., Tiezzi, F., Maltecca, C., Gray, K. A., & Knauer, M. T. (2015). Variance component estimates for alternative litter size traits in swine. Journal of Animal Science, 93(11), 5153-5163. doi:10.2527/jas.2015-9416Cunningham, P. J., England, M. E., Young, L. D., & Zimmerman, D. R. (1979). Selection for Ovulation Rate in Swine: Correlated Response in Litter Size and Weight. Journal of Animal Science, 48(3), 509-516. doi:10.2527/jas1979.483509xGarcı́a, M. L., & Baselga, M. (2002). Estimation of genetic response to selection in litter size of rabbits using a cryopreserved control population. Livestock Production Science, 74(1), 45-53. doi:10.1016/s0301-6226(01)00280-9Damgaard, L. H., Rydhmer, L., Løvendahl, P., & Grandinson, K. (2003). Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling1. Journal of Animal Science, 81(3), 604-610. doi:10.2527/2003.813604xSantacreu, M. A., Mocé, M. L., Climent, A., & Blasco, A. (2005). Divergent selection for uterine capacity in rabbits. II. Correlated response in litter size and its components estimated with a cryopreserved control population1. Journal of Animal Science, 83(10), 2303-2307. doi:10.2527/2005.83102303xBennett, G. L., & Leymaster, K. A. (1989). Integration of Ovulation Rate, Potential Embryonic Viability and Uterine Capacity into a Model of Litter Size in Swine. Journal of Animal Science, 67(5), 1230. doi:10.2527/jas1989.6751230

    Effect of increased ovulation rate on embryo and foetal survival as a model for selection by ovulation rate in rabbits

    Full text link
    [EN] Selection for ovulation rate in prolific species has not improved litter size, due to an increase in prenatal mortality, with most mortality observed in the foetal period. The aim of this study was to investigate the magnitude and timing of embryo and early foetal survival in females with high ovulation rate using hormonal treatment as a model for selection by ovulation rate. Two groups of females (treated and untreated) were used. Treated females were injected with 50 IU equine chorionic gonadotropin 48 h before mating. Females were slaughtered at 18 d of gestation. Ovulation rate (OR), number of implanted embryos (IE), number of live foetuses at 12 and 18 d (LF12 and LF18, respectively) were recorded. In addition, embryo survival (ES=IE/OR), foetal survival at 18 d of gestation (FSLF18=LF18/IE), foetal survival between 12 and 18 d of gestation (FSLF18/LF12=LF18/LF12) and prenatal survival (PSLF18=LF18/OR) were estimated. For each female, the mean and variability of the weight for live foetuses (LFWm and LFWv, respectively) and their placentas (LFPWm and LFPWv, respectively) were calculated. Treated females had a higher ovulation rate (+3.02 ova) than untreated females, with a probability of 0.99. An increase in the differences (D) between treated and untreated females was observed from implantation to 18 d of gestation (D=–0.33, –0.70 and –1.28 for IE, LF12 and LF18, respectively). These differences had a low accuracy and the probability that treated females would have a lower number of foetuses also increased throughout gestation (0.60, 0.70 and 0.86 for IE, LF12 and LF18, respectively). According to the previous results for OR and LF18, treated females showed a lower survival rate from ovulation to 18 d of gestation (D=–0.12, P=0.98 for PSLF18). Treated females also had lower embryo and foetal survival (D=–0.10 and P=0.94 for ES and D=–0.08 and P=0.93 for FSLF18). Main differences in foetal survival appeared from 12 to 18 d of gestation (D=–0.09 and P=0.98 for FSLF18/LF12). Unexpectedly, treated females showed similar foetus weight and higher foetal placenta weight than untreated females (D=0.25 g, P=0.98) and lower variability for these traits (D=–0.02 g, P=0.72 for LFWv and D=–0.05 g, P=0.83 for LFPWv). These results are not related to a lower number of IE or LF18. Thus, the effect of increasing by three ova in rabbits leads to a lower embryo and early foetal survival. There seems to be no relationship between foetal mortality and foetus weight.This study was supported by the Comision Interministerial de Ciencia y Tecnologia CICYT- AGL2011-29831-C03-01 and by funds from Generalitat Valenciana research programme (Prometeo 2009/125). A.Y. Badawy was supported by a grant of the Egyptian Ministry of Higher Education.Badawy, A.; Peiro, R.; Blasco Mateu, A.; Santacreu Jerez, MA. (2016). Effect of increased ovulation rate on embryo and foetal survival as a model for selection by ovulation rate in rabbits. World Rabbit Science. 24(2):87-94. https://doi.org/10.4995/wrs.2016.3992879424

    Inflammatory correlated response in two lines of rabbit selected divergently for litter size environmental variability

    Full text link
    [EN] Animal welfare is a priority objective for the livestock industry. Litter size environmental variability has been related to environmental sensitivity. A divergent selection experiment for environmental variance of litter size variance was carried out successfully in rabbits over thirteen generations. The low line showed a lower inflammatory response and susceptibility to infectious disorders than the high line. In conclusion, the decrease of environmental sensitivity seems to increase the adaptation of the animal to the environment, and thus, its welfare.This research was supported by Projects AGL2017-86083, C2-1-P and C2-2-P, funded by Ministerio de Ciencia e Innovacion (MIC)-Agencia Estatal de Investigacion (AEI) and el Fondo Europeo de Desarrollo Regional (FEDER) "Una manera de hacer Europa" and Project AICO/2019/169 funded by Valencia Regional Government.Beloumi, D.; Blasco Mateu, A.; Muelas, R.; Santacreu Jerez, MA.; García, MDLL.; Argente, M. (2020). Inflammatory correlated response in two lines of rabbit selected divergently for litter size environmental variability. Animals. 10(9):1-9. https://doi.org/10.3390/ani10091540S19109BODIN, L., BOLET, G., GARCIA, M., GARREAU, H., LARZUL, C., & DAVID, I. (2010). Robustesse et canalisation : vision de généticiens. INRAE Productions Animales, 23(1), 11-22. doi:10.20870/productions-animales.2010.23.1.3281Broom, D. M. (2008). Welfare Assessment and Relevant Ethical Decisions: Key Concepts. Annual Review of Biomedical Sciences, 10(0). doi:10.5016/1806-8774.2008.v10pt79MORMEDE, P., BOISSEAU-SOWINSKI, L., CHIRON, J., DIEDERICH, C., EDDISON, J., GUICHET, J.-L., … MEUNIER-SALAÜN, M.-C. (2018). Bien-être animal : contexte, définition, évaluation. INRA Productions Animales, 31(2), 145-162. doi:10.20870/productions-animales.2018.31.2.2299Scrivo, R., Vasile, M., Bartosiewicz, I., & Valesini, G. (2011). Inflammation as «common soil» of the multifactorial diseases. Autoimmunity Reviews, 10(7), 369-374. doi:10.1016/j.autrev.2010.12.006Del Giudice, M., & Gangestad, S. W. (2018). Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain, Behavior, and Immunity, 70, 61-75. doi:10.1016/j.bbi.2018.02.013Lockwood, K. G., Marsland, A. L., Cohen, S., & Gianaros, P. J. (2016). Sex differences in the association between stressor-evoked interleukin-6 reactivity and C-reactive protein. Brain, Behavior, and Immunity, 58, 173-180. doi:10.1016/j.bbi.2016.07.001Haran, J., Gardiner, F., & Suner, S. (2012). Correlation of C-reactive protein to severity of symptoms in acute influenza A infection. Journal of Emergencies, Trauma, and Shock, 5(2), 149. doi:10.4103/0974-2700.96484Shrotriya, S., Walsh, D., Nowacki, A. S., Lorton, C., Aktas, A., Hullihen, B., … Estfan, B. (2018). Serum C-reactive protein is an important and powerful prognostic biomarker in most adult solid tumors. PLOS ONE, 13(8), e0202555. doi:10.1371/journal.pone.0202555Chen, W., Zheng, K. I., Liu, S., Yan, Z., Xu, C., & Qiao, Z. (2020). Plasma CRP level is positively associated with the severity of COVID-19. Annals of Clinical Microbiology and Antimicrobials, 19(1). doi:10.1186/s12941-020-00362-2Stoner, L., Lucero, A. A., Palmer, B. R., Jones, L. M., Young, J. M., & Faulkner, J. (2013). Inflammatory biomarkers for predicting cardiovascular disease. Clinical Biochemistry, 46(15), 1353-1371. doi:10.1016/j.clinbiochem.2013.05.070Iung, L. H. de S., Carvalheiro, R., Neves, H. H. de R., & Mulder, H. A. (2019). Genetics and genomics of uniformity and resilience in livestock and aquaculture species: A review. Journal of Animal Breeding and Genetics, 137(3), 263-280. doi:10.1111/jbg.12454Blasco, A., Martínez-Álvaro, M., García, M.-L., Ibáñez-Escriche, N., & Argente, M.-J. (2017). Selection for environmental variance of litter size in rabbits. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-017-0323-4Argente, M. J., García, M. L., Zbyňovská, K., Petruška, P., Capcarová, M., & Blasco, A. (2019). Correlated response to selection for litter size environmental variability in rabbits’ resilience. Animal, 13(10), 2348-2355. doi:10.1017/s1751731119000302Leineweber, C., Müller, E., & Marschang, R. E. (2018). Blood reference intervals for rabbits (Oryctolagus cuniculus) from routine diagnostic samples. Tierärztliche Praxis Ausgabe K: Kleintiere / Heimtiere, 46(06), 393-398. doi:10.1055/s-0038-1677403Mbanasor, U. U., Anene, B. M., Chime, A. B., Nnaji, T. O., Eze, J. I., & Ezekwe, A. G. (2003). Haematology of normal and trypanosome infected Muturu cattle in southeastern Nigeria. Nigerian Journal of Animal Production, 30(2). doi:10.4314/njap.v30i2.3300Moore, D. M., Zimmerman, K., & Smith, S. A. (2015). Hematological Assessment in Pet Rabbits. Veterinary Clinics of North America: Exotic Animal Practice, 18(1), 9-19. doi:10.1016/j.cvex.2014.09.003García-Quirós, A., Arnau-Bonachera, A., Penadés, M., Cervera, C., Martínez-Paredes, E., Ródenas, L., … Pascual, J. J. (2014). A robust rabbit line increases leucocyte counts at weaning and reduces mortality by digestive disorder during fattening. Veterinary Immunology and Immunopathology, 161(3-4), 123-131. doi:10.1016/j.vetimm.2014.07.005Ma, T., & Gao, Y. (2020). New insights into roles of basophils in initiating T helper type 2 immunity. Chinese Herbal Medicines, 12(1), 14-18. doi:10.1016/j.chmed.2019.09.006Furze, R. C., & Rankin, S. M. (2008). Neutrophil mobilization and clearance in the bone marrow. Immunology, 125(3), 281-288. doi:10.1111/j.1365-2567.2008.02950.xMahgoub, O., Kadim, I. T., Tageldin, M. H., Al-Marzooqi, W. S., Khalaf, S. Q., & Ali, A. A. (2008). Clinical profile of sheep fed non-conventional feeds containing phenols and condensed tannins. Small Ruminant Research, 78(1-3), 115-122. doi:10.1016/j.smallrumres.2008.05.009Stilwell, G., de Carvalho, R. C., Lima, M. S., & Broom, D. M. (2009). Effect of caustic paste disbudding, using local anaesthesia with and without analgesia, on behaviour and cortisol of calves. Applied Animal Behaviour Science, 116(1), 35-44. doi:10.1016/j.applanim.2008.06.008Mainau, E., & Manteca, X. (2011). Pain and discomfort caused by parturition in cows and sows. Applied Animal Behaviour Science, 135(3), 241-251. doi:10.1016/j.applanim.2011.10.020Gladden, N., McKeegan, D., Viora, L., & Ellis, K. A. (2018). Postpartum ketoprofen treatment does not alter stress biomarkers in cows and calves experiencing assisted and unassisted parturition: a randomised controlled trial. Veterinary Record, 183(13), 414-414. doi:10.1136/vr.104913Webster, J. I., Tonelli, L., & Sternberg, E. M. (2002). Neuroendocrine Regulation of Immunity. Annual Review of Immunology, 20(1), 125-163. doi:10.1146/annurev.immunol.20.082401.104914Glaser, R., & Kiecolt-Glaser, J. K. (2005). Stress-induced immune dysfunction: implications for health. Nature Reviews Immunology, 5(3), 243-251. doi:10.1038/nri1571Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harbor Perspectives in Biology, 6(10), a016295-a016295. doi:10.1101/cshperspect.a016295Mootoo, A., Stylianou, E., Arias, M., & Reljic, R. (2009). TNF-α in Tuberculosis: A Cytokine with a Split Personality. Inflammation & Allergy-Drug Targets, 8(1), 53-62. doi:10.2174/187152809787582543Bruunsgaard, H., Andersen-Ranberg, K., Jeune, B., Pedersen, A. N., Skinhoj, P., & Pedersen, B. K. (1999). A High Plasma Concentration of TNF-  Is Associated With Dementia in Centenarians. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 54(7), M357-M364. doi:10.1093/gerona/54.7.m357Jialal, I., Devaraj, S., & Venugopal, S. K. (2004). C-Reactive Protein: Risk Marker or Mediator in Atherothrombosis? Hypertension, 44(1), 6-11. doi:10.1161/01.hyp.0000130484.20501.dfBaumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M., & Mondelli, V. (2015). Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Molecular Psychiatry, 21(5), 642-649. doi:10.1038/mp.2015.67Markanday, A. (2015). Acute Phase Reactants in Infections: Evidence-Based Review and a Guide for Clinicians. Open Forum Infectious Diseases, 2(3). doi:10.1093/ofid/ofv098Rauw, W. M. (2012). Immune response from a resource allocation perspective. Frontiers in Genetics, 3. doi:10.3389/fgene.2012.00267Sharma, A., Tate, M., Mathew, G., Vince, J. E., Ritchie, R. H., & de Haan, J. B. (2018). Oxidative Stress and NLRP3-Inflammasome Activity as Significant Drivers of Diabetic Cardiovascular Complications: Therapeutic Implications. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00114Fan, J., Kitajima, S., Watanabe, T., Xu, J., Zhang, J., Liu, E., & Chen, Y. E. (2015). Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacology & Therapeutics, 146, 104-119. doi:10.1016/j.pharmthera.2014.09.009Zhao, X., Li, L., Li, X., Li, J., Wang, D., & Zhang, H. (2019). The Relationship between Serum Bilirubin and Inflammatory Bowel Disease. Mediators of Inflammation, 2019, 1-7. doi:10.1155/2019/5256460Inoguchi, T., Sonoda, N., & Maeda, Y. (2016). Bilirubin as an important physiological modulator of oxidative stress and chronic inflammation in metabolic syndrome and diabetes: a new aspect on old molecule. Diabetology International, 7(4), 338-341. doi:10.1007/s13340-016-0288-5Koenig, G., & Seneff, S. (2015). Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk. Disease Markers, 2015, 1-18. doi:10.1155/2015/818570Kim, W. R., Flamm, S. L., Di Bisceglie, A. M., & Bodenheimer, H. C. (2008). Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology, 47(4), 1363-1370. doi:10.1002/hep.22109Dirksen, K., Verzijl, T., van den Ingh, T. S. G. A. M., Vernooij, J. C. M., van der Laan, L. J. W., Burgener, I. A., … Fieten, H. (2016). Hepatocyte-derived microRNAs as sensitive serum biomarkers of hepatocellular injury in Labrador retrievers. The Veterinary Journal, 211, 75-81. doi:10.1016/j.tvjl.2016.01.010Casto-Rebollo, C., Argente, M. J., García, M. L., Pena, R., & Ibáñez-Escriche, N. (2020). Identification of functional mutations associated with environmental variance of litter size in rabbits. Genetics Selection Evolution, 52(1). doi:10.1186/s12711-020-00542-

    Identification of differentially expressed genes in the oviduct of two rabbit lines divergently selected for uterine capacity using suppression subtractive hybridization

    Full text link
    This is the accepted version of the following article: Ballester, M.; Castelló, A.; Peiró Barber, RM.; Argente, M. J.;Santacreu Jerez, MA.; Folch, J. M. (2013). Identification of differentially expressed genes in the oviduct of two rabbit lines divergently selected for uterine capacity using suppression subtractive hybridization. Animal Genetics. 44:296-304. doi:10.1111/AGE.12005. , which has been published in final form at http://dx.doi.org/10.1111/age.12005.[EN] Suppressive subtractive hybridization libraries from oviduct at 62h post-mating of two lines of rabbits divergently selected for uterine capacity were generated to identify differentially expressed genes. A total of 438 singletons and 126 contigs were obtained by cluster assembly and sequence alignment of 704 expressed sequence tags (ESTs), of which 54% showed homology to known proteins of the non-redundant NCBI databases. Differential screening by dot blot validated 71 ESTs, of which 47 showed similarity to known genes. Transcripts of genes were functionally annotated in the molecular function and the biological process gene ontology categories using the blast2go software and were assigned to reproductive developmental process, immune response, amino acid metabolism and degradation, response to stress and apoptosis terms. Finally, three interesting genes, PGR, HSD17B4 and ERO1L, were identified as overexpressed in the low line using RT-qPCR. Our study provides a list of candidate genes that can be useful to understanding the molecular mechanisms underlying the phenotypic differences observed in early embryo survival and development traits.We would like to thank Henry Cardona Cadavid for help in the sequencing. This study was funded with project AGL2005-07624-C03.Ballester Devis, M.; Castelló Farre, A.; Peiró Barber, RM.; Argente, MJ.; Santacreu Jerez, MA.; Folch, JM. (2013). Identification of differentially expressed genes in the oviduct of two rabbit lines divergently selected for uterine capacity using suppression subtractive hybridization. Animal Genetics. 44:296-304. https://doi.org/10.1111/AGE.12005S2963044

    The effect of unilateral ovariectomy on early embryonic survival and embryo development in rabbits

    Full text link
    [EN] Unilateral ovariectomy can be used to study uterine capacity in rabbits because an overcrowding of the functional uterine horn is produced. Due to the uterus duplex, the rabbit is the ideal model for such studies. However, this technique may affect embryo survival. The aim of this work is to study the effect of unilateral ovariectomy on early embryo survival and development in rabbit. A total of 101 unilateral ovariectomised females and 52 intact females were compared after slaughter at 30 h post-mating. Early embryo survival was estimated as the ratio between number of embryo recovered and ovulation rate. No differences were found between intact and unilaterally ovariectomised females in this trait. Unilateral ovariectomy did not change embryo development, measured as the number of embryo cells. Variability of embryo development was not affected either. At 30 h post-mating, the majority of embryos (86.2%) were 4-cell stage. Embryo quality was evaluated according to morphological criteria. No difference in embryo quality between intact and unilaterally ovariectomised females was found. Therefore, unilateral ovariectomy performed before puberty in rabbit does not modify early embryo survival and development.This experiment was supported by the Interministerial Commission for Science and Technology (AGL2005-07624-C03-01 and AGL2008-05514-C02-01).Peiró Barber, RM.; Gallego, M.; Blasco Mateu, A.; Santacreu Jerez, MA. (2014). The effect of unilateral ovariectomy on early embryonic survival and embryo development in rabbits. World Rabbit Science. 22(2):123-127. https://doi.org/10.4995/wrs.2014.2105SWORD12312722

    Effect of divergent selection for uterine capacity on embryonic survival and development at 30 h post-mating in unilaterally ovariectomized rabbit females

    Get PDF
    [EN] Uterine capacity has been proposed as an indirect way to increase litter size. The aim of this work is to study the effect of a divergent selection for uterine capacity (UC) on reproductive traits at 30 h post mating in unilaterally ovariectomized (ULO) females. A total of 62 ULO females from the high line (selected to increase UC) and 39 ULO females from the low line (selected to decrease UC) were used. Ovulation rate was estimated as the number of corpora haemorrhagica and early embryonic survival was estimated as the ratio between number of embryos and ovulation rate. No differences in ovulation rate and early embryonic survival at 30 h post mating were found between high and low lines. Selection for UC did not change the embryonic stage of development either, the majority of embryos being at 4-cell stage. Additionally, the embryos were evaluated according to morphological criteria and more than 95% of the embryos were evaluated as good or fair quality. No differences in embryonic morphological criteria between high and low lines were found either. Thus, selection for UC did not modify the early embryonic survival and development in ULO females at 30 h post mating.This experiment was supported by the Comision Interministerial de Ciencia y Tecnologia (AGL2005-07624-C03-01 and AGL2008-05514-C02-01).Peiró Barber, RM.; Gallego, M.; Blasco Mateu, A.; Santacreu Jerez, MA. (2015). Effect of divergent selection for uterine capacity on embryonic survival and development at 30 h post-mating in unilaterally ovariectomized rabbit females. World Rabbit Science. 23(4):241-215. https://doi.org/10.4995/wrs.2015.3592SWORD24121523

    Genomic regions influencing intramuscular fat in divergently selected rabbit lines

    Get PDF
    [EN] Intramuscular fat (IMF) is one of the main meat quality traits for breeding programs in livestock species. The main objective of this study was to identify genomic regions associated with IMF content comparing two rabbit populations divergently selected for this trait, and to generate a list of putative candidate genes. Animals were genotyped using the Affymetrix Axiom OrcunSNP Array (200k). After quality control, the data involved 477 animals and 93,540 single nucleotide polymorphisms (SNPs). Two methods were used in this research: single marker regressions with the data adjusted by genomic relatedness, and a Bayesian multi-marker regression. Associated genomic regions were located on the rabbit chromosomes (OCU) OCU1, OCU8 and OCU13. The highest value for the percentage of the genomic variance explained by a genomic region was found in two consecutive genomic windows on OCU8 (7.34%). Genes in the associated regions of OCU1 and OCU8 presented biological functions related to the control of adipose cell function, lipid binding, transportation and localization (APOLD1, PLBD1, PDE6H, GPRC5D, and GPRC5A) and lipid metabolic processes (MTMR2). The EWSR1 gene, underlying the OCU13 region, is linked to the development of brown adipocytes. The findings suggest that there is a large component of polygenic effect behind the differences in IMF content in these two lines, as the variance explained by most of the windows was low. The genomic regions of OCU1, OCU8 and OCU13 revealed novel candidate genes. Further studies would be needed to validate the associations and explore their possible application in selection programs.The work was funded by project AGL2014-55921-C2-1-P from National Programme for Fostering Excellence in Scientific and Technical Research -Project I+D. BSS was supported by a FPI grant from the Ministry of Economy and Competitiveness of Spain+ (BES-2015-074194). NIB was supported with a "Ramon y Cajal" grant provided by Ministerio de Ciencia e Innovacion (RYC-2016-19764). CSH and PN were supported by the Medical Research Council (United kingdom, grants MC_PC_U127592696 and MC_PC_U127561128). CSH was supported by Biotechnology and Biological Sciences Research Council (United Kingdom, Grant/Award Number: BBS/E/D/30002276).Sosa-Madrid, BS.; Hernández, P.; Blasco Mateu, A.; Haley, CS.; Fontanesi, L.; Santacreu Jerez, MA.; Pena, RN.... (2020). Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics. 51:58-69. https://doi.org/10.1111/age.12873586951Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., … Searle, S. M. J. (2016). The Ensembl gene annotation system. Database, 2016, baw093. doi:10.1093/database/baw093Aloulou, A., Ali, Y. B., Bezzine, S., Gargouri, Y., & Gelb, M. H. (2012). Phospholipases: An Overview. Methods in Molecular Biology, 63-85. doi:10.1007/978-1-61779-600-5_4Amisten, S., Mohammad Al-Amily, I., Soni, A., Hawkes, R., Atanes, P., Persaud, S. J., … Salehi, A. (2017). Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic β-cells. Endocrine Journal, 64(3), 325-338. doi:10.1507/endocrj.ej16-0338Astle, W., & Balding, D. J. (2009). Population Structure and Cryptic Relatedness in Genetic Association Studies. Statistical Science, 24(4). doi:10.1214/09-sts307Aulchenko, Y. S., Ripke, S., Isaacs, A., & van Duijn, C. M. (2007). GenABEL: an R library for genome-wide association analysis. Bioinformatics, 23(10), 1294-1296. doi:10.1093/bioinformatics/btm108Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2004). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. doi:10.1093/bioinformatics/bth457Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining window-boundaries for genomic analyses using smoothing spline techniques. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0105-9Blasco, A., & Pena, R. N. (2018). Current Status of Genomic Maps: Genomic Selection/GBV in Livestock. Animal Biotechnology 2, 61-80. doi:10.1007/978-3-319-92348-2_4Browning, B. L., & Browning, S. R. (2016). Genotype Imputation with Millions of Reference Samples. The American Journal of Human Genetics, 98(1), 116-126. doi:10.1016/j.ajhg.2015.11.020Carneiro, M., Afonso, S., Geraldes, A., Garreau, H., Bolet, G., Boucher, S., … Ferrand, N. (2011). The Genetic Structure of Domestic Rabbits. Molecular Biology and Evolution, 28(6), 1801-1816. doi:10.1093/molbev/msr003Carneiro, M., Rubin, C.-J., Di Palma, F., Albert, F. W., Alföldi, J., Barrio, A. M., … Andersson, L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345(6200), 1074-1079. doi:10.1126/science.1253714Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39Chaves, V. E., Frasson, D., & Kawashita, N. H. (2011). Several agents and pathways regulate lipolysis in adipocytes. Biochimie, 93(10), 1631-1640. doi:10.1016/j.biochi.2011.05.018Chen, W.-M., & Abecasis, G. R. (2007). Family-Based Association Tests for Genomewide Association Scans. The American Journal of Human Genetics, 81(5), 913-926. doi:10.1086/521580Claire D’Andre, H., Paul, W., Shen, X., Jia, X., Zhang, R., Sun, L., & Zhang, X. (2013). Identification and characterization of genes that control fat deposition in chickens. Journal of Animal Science and Biotechnology, 4(1). doi:10.1186/2049-1891-4-43Do, D. N., Strathe, A. B., Ostersen, T., Pant, S. D., & Kadarmideen, H. N. (2014). Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Frontiers in Genetics, 5. doi:10.3389/fgene.2014.00307Do, D. N., Schenkel, F. S., Miglior, F., Zhao, X., & Ibeagha-Awemu, E. M. (2018). Genome wide association study identifies novel potential candidate genes for bovine milk cholesterol content. Scientific Reports, 8(1). doi:10.1038/s41598-018-31427-0Fan, B., Du, Z.-Q., Gorbach, D. M., & Rothschild, M. F. (2010). Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals. Asian-Australasian Journal of Animal Sciences, 23(7), 833-847. doi:10.5713/ajas.2010.r.03Gao, Y., Zhang, R., Hu, X., & Li, N. (2007). Application of genomic technologies to the improvement of meat quality of farm animals. Meat Science, 77(1), 36-45. doi:10.1016/j.meatsci.2007.03.026Garrick, D. J. (2011). The nature, scope and impact of genomic prediction in beef cattle in the United States. Genetics Selection Evolution, 43(1). doi:10.1186/1297-9686-43-17Garrick, D. J., & Fernando, R. L. (2013). Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology. Genome-Wide Association Studies and Genomic Prediction, 275-298. doi:10.1007/978-1-62703-447-0_11Gotoh, T., Takahashi, H., Nishimura, T., Kuchida, K., & Mannen, H. (2014). Meat produced by Japanese Black cattle and Wagyu. Animal Frontiers, 4(4), 46-54. doi:10.2527/af.2014-0033Gotoh, T., Nishimura, T., Kuchida, K., & Mannen, H. (2018). The Japanese Wagyu beef industry: current situation and future prospects — A review. Asian-Australasian Journal of Animal Sciences, 31(7), 933-950. doi:10.5713/ajas.18.0333Hocquette, J. F., Gondret, F., Baéza, E., Médale, F., Jurie, C., & Pethick, D. W. (2010). Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal, 4(2), 303-319. doi:10.1017/s1751731109991091Hopkins, D. L., Fogarty, N. M., & Mortimer, S. I. (2011). Genetic related effects on sheep meat quality. Small Ruminant Research, 101(1-3), 160-172. doi:10.1016/j.smallrumres.2011.09.036Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics, 28(13), 1805-1806. doi:10.1093/bioinformatics/bts251Jin, C., Wang, W., Liu, Y., & Zhou, Y. (2017). RAI3 knockdown promotes adipogenic differentiation of human adipose-derived stem cells by decreasing β-catenin levels. Biochemical and Biophysical Research Communications, 493(1), 618-624. doi:10.1016/j.bbrc.2017.08.142Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., … Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90-W97. doi:10.1093/nar/gkw377Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genetics, 11(3), 241-247. doi:10.1038/ng1195-241Lionikas, A., Meharg, C., Derry, J. M., Ratkevicius, A., Carroll, A. M., Vandenbergh, D. J., & Blizard, D. A. (2012). Resolving candidate genes of mouse skeletal muscle QTL via RNA-Seq and expression network analyses. BMC Genomics, 13(1), 592. doi:10.1186/1471-2164-13-592López de Maturana, E., Ibáñez-Escriche, N., González-Recio, Ó., Marenne, G., Mehrban, H., Chanock, S. J., … Malats, N. (2014). Next generation modeling in GWAS: comparing different genetic architectures. Human Genetics, 133(10), 1235-1253. doi:10.1007/s00439-014-1461-1Marras, G., Rossoni, A., Schwarzenbacher, H., Biffani, S., Biscarini, F., & Nicolazzi, E. L. (2016). zanardi: an open-source pipeline for multiple-species genomic analysis of SNP array data. Animal Genetics, 48(1), 121-121. doi:10.1111/age.12485Martínez-Álvaro, M., Hernández, P., & Blasco, A. (2016). Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters1. Journal of Animal Science, 94(12), 4993-5003. doi:10.2527/jas.2016-0590Mateescu, R. G., Garrick, D. J., Garmyn, A. J., VanOverbeke, D. L., Mafi, G. G., & Reecy, J. M. (2015). Genetic parameters for sensory traits in longissimus muscle and their associations with tenderness, marbling score, and intramuscular fat in Angus cattle1. Journal of Animal Science, 93(1), 21-27. doi:10.2527/jas.2014-8405McLarenD.G.&SchultzC.M.(1992)Genetic Selection to Improve the Quality and Composition of Pigs. In45th Reciprocal Meat Conferences Proceedings. Colorado State University pp.115–21.Migdał, Ł., Kozioł, K., Pałka, S., Migdał, W., Otwinowska-Mindur, A., Kmiecik, M., … Bieniek, J. (2018). Single nucleotide polymorphisms within rabbits ( Oryctolagus cuniculus ) fatty acids binding protein 4 ( FABP4 ) are associated with meat quality traits. Livestock Science, 210, 21-24. doi:10.1016/j.livsci.2018.01.018Miller, I., Rogel-Gaillard, C., Spina, D., Fontanesi, L., & de Almeida, A. (2014). The Rabbit as an Experimental and Production Animal: From Genomics to Proteomics. Current Protein & Peptide Science, 15(2), 134-145. doi:10.2174/1389203715666140221115135Mortimer, S. I., van der Werf, J. H. J., Jacob, R. H., Hopkins, D. L., Pannier, L., Pearce, K. L., … Pethick, D. W. (2014). Genetic parameters for meat quality traits of Australian lamb meat. Meat Science, 96(2), 1016-1024. doi:10.1016/j.meatsci.2013.09.007Nyima, T., Müller, M., Hooiveld, G. J. E. J., Morine, M. J., & Scotti, M. (2016). Nonlinear transcriptomic response to dietary fat intake in the small intestine of C57BL/6J mice. BMC Genomics, 17(1). doi:10.1186/s12864-016-2424-9Ochsner, K. P., MacNeil, M. D., Lewis, R. M., & Spangler, M. L. (2017). Economic selection index development for Beefmaster cattle I: Terminal breeding objective1. Journal of Animal Science, 95(3), 1063-1070. doi:10.2527/jas.2016.1231Pannier, L., Gardner, G. E., O’Reilly, R. A., & Pethick, D. W. (2018). Factors affecting lamb eating quality and the potential for their integration into an MSA sheepmeat grading model. Meat Science, 144, 43-52. doi:10.1016/j.meatsci.2018.06.035Peña, F., Juárez, M., Bonvillani, A., García, P., Polvillo, O., & Domenech, V. (2011). Muscle and genotype effects on fatty acid composition of goat kid intramuscular fat. Italian Journal of Animal Science, 10(3), e40. doi:10.4081/ijas.2011.e40Pena, R., Ros-Freixedes, R., Tor, M., & Estany, J. (2016). Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs. International Journal of Molecular Sciences, 17(12), 2100. doi:10.3390/ijms17122100Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795Ros-Freixedes, R., Gol, S., Pena, R. N., Tor, M., Ibáñez-Escriche, N., Dekkers, J. C. M., & Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLOS ONE, 11(3), e0152496. doi:10.1371/journal.pone.0152496Sahana, G., Guldbrandtsen, B., & Lund, M. S. (2011). Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. Journal of Dairy Science, 94(1), 479-486. doi:10.3168/jds.2010-3381Schmid, M., & Bennewitz, J. (2017). Invited review: Genome-wide association analysis for quantitative traits in livestock – a selective review of statistical models and experimental designs. Archives Animal Breeding, 60(3), 335-346. doi:10.5194/aab-60-335-2017Song, H., Sun, B., Liao, Y., Xu, D., Guo, W., Wang, T., … Deng, J. (2018). GPRC5A deficiency leads to dysregulated MDM2 via activated EGFR signaling for lung tumor development. International Journal of Cancer, 144(4), 777-787. doi:10.1002/ijc.31726Spencer, C. C. A., Su, Z., Donnelly, P., & Marchini, J. (2009). Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip. PLoS Genetics, 5(5), e1000477. doi:10.1371/journal.pgen.1000477Stephens, M., & Balding, D. J. (2009). Bayesian statistical methods for genetic association studies. Nature Reviews Genetics, 10(10), 681-690. doi:10.1038/nrg2615Sukegawa, S., Miyake, T., Ibi, T., Takahagi, Y., Murakami, H., Morimatsu, F., & Yamada, T. (2013). Multiple marker effects of single nucleotide polymorphisms in three genes,AKIRIN2,EDG1andRPL27A, for marbling development in Japanese Black cattle. Animal Science Journal, 85(3), 193-197. doi:10.1111/asj.12108Sul, J. H., Martin, L. S., & Eskin, E. (2018). Population structure in genetic studies: Confounding factors and mixed models. PLOS Genetics, 14(12), e1007309. doi:10.1371/journal.pgen.1007309Swierczynski, J. (2014). Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World Journal of Gastroenterology, 20(9), 2279. doi:10.3748/wjg.v20.i9.2279Toosi, A., Fernando, R. L., & Dekkers, J. C. M. (2018). Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis. Genetics Selection Evolution, 50(1). doi:10.1186/s12711-018-0402-1Uemoto, Y., Nakano, H., Kikuchi, T., Sato, S., Ishida, M., Shibata, T., … Suzuki, K. (2011). Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population. Animal Genetics, 43(2), 225-228. doi:10.1111/j.1365-2052.2011.02236.xVisscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. The American Journal of Human Genetics, 101(1), 5-22. doi:10.1016/j.ajhg.2017.06.005Vitti, J. J., Grossman, S. R., & Sabeti, P. C. (2013). Detecting Natural Selection in Genomic Data. Annual Review of Genetics, 47(1), 97-120. doi:10.1146/annurev-genet-111212-133526Wahl, S., Drong, A., Lehne, B., Loh, M., Scott, W. R., Kunze, S., … Yang, Y. (2016). Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature, 541(7635), 81-86. doi:10.1038/nature20784Wang, W., & Seale, P. (2016). Control of brown and beige fat development. Nature Reviews Molecular Cell Biology, 17(11), 691-702. doi:10.1038/nrm.2016.96Wang, B., Yang, Q., Harris, C. L., Nelson, M. L., Busboom, J. R., Zhu, M.-J., & Du, M. (2016). Nutrigenomic regulation of adipose tissue development — role of retinoic acid: A review. Meat Science, 120, 100-106. doi:10.1016/j.meatsci.2016.04.003Wang, X., Tucker, N. R., Rizki, G., Mills, R., Krijger, P. H., de Wit, E., … Boyer, L. A. (2016). Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures. eLife, 5. doi:10.7554/elife.10557Wang, J., Shi, Y., Elzo, M. A., Su, Y., Jia, X., Chen, S., & Lai, S. (2017). Myopalladin gene polymorphism is associated with rabbit meat quality traits. Italian Journal of Animal Science, 16(3), 400-404. doi:10.1080/1828051x.2017.1296333Won, S., Jung, J., Park, E., & Kim, H. (2018). Identification of genes related to intramuscular fat content of pigs using genome-wide association study. Asian-Australasian Journal of Animal Sciences, 31(2), 157-162. doi:10.5713/ajas.17.0218Zhang, H., Wang, Z., Wang, S., & Li, H. (2012). Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology, 3(1). doi:10.1186/2049-1891-3-26Zhang, G.-W., Gao, L., Chen, S.-Y., Zhao, X.-B., Tian, Y.-F., Wang, X., … Lai, S.-J. (2013). Single nucleotide polymorphisms in the FTO gene and their association with growth and meat quality traits in rabbits. Gene, 527(2), 553-557. doi:10.1016/j.gene.2013.06.024Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-636

    La supervivencia prenatal de una coneja reproductora

    Full text link
    corecore