4 research outputs found

    Generalized matrix models and AGT correspondence at all genera

    Get PDF
    We study generalized matrix models corresponding to n-point Virasoro conformal blocks on Riemann surfaces with arbitrary genus g. Upon AGT correspondence, these describe four dimensional N=2 SU(2)^{n+3g-3} gauge theories with generalized quiver diagrams. We obtain the generalized matrix models from the perturbative evaluation of the Liouville correlation functions and verify the consistency of the description with respect to degenerations of the Riemann surface. Moreover, we derive the Seiberg-Witten curve for the N=2 gauge theory as the spectral curve of the generalized matrix model, thus providing a check of AGT correspondence at all genera.Comment: 19 pages; v2: version to appear in JHE

    Six-dimensional supersymmetric gauge theories, quantum cohomology of instanton moduli spaces and gl(N) Quantum Intermediate Long Wave Hydrodynamics

    Get PDF
    We show that the exact partition function of U(N) six-dimensional gauge theory with eight supercharges on \u21022 7 S 2 provides the quantization of the integrable system of hydrodynamic type known as gl(N) periodic Intermediate Long Wave (ILW). We characterize this system as the hydrodynamic limit of elliptic Calogero-Moser integrable system. We compute the Bethe equations from the effective gauged linear sigma model on S 2 with target space the ADHM instanton moduli space, whose mirror computes the Yang-Yang function of gl(N) ILW. The quantum Hamiltonians are given by the local chiral ring observables of the six-dimensional gauge theory. As particular cases, these provide the gl(N) Benjamin-Ono and Korteweg-de Vries quantum Hamiltonians. In the four dimensional limit, we identify the local chiral ring observables with the conserved charges of Heisenberg plus W N algebrae, thus providing a gauge theoretical proof of AGT correspondence. \ua9 2014 The Author(s)

    On "Dotsenko-Fateev" representation of the toric conformal blocks

    Full text link
    We demonstrate that the recent ansatz of arXiv:1009.5553, inspired by the original remark due to R.Dijkgraaf and C.Vafa, reproduces the toric conformal blocks in the same sense that the spherical blocks are given by the integral representation of arXiv:1001.0563 with a peculiar choice of open integration contours for screening insertions. In other words, we provide some evidence that the toric conformal blocks are reproduced by appropriate beta-ensembles not only in the large-N limit, but also at finite N. The check is explicitly performed at the first two levels for the 1-point toric functions. Generalizations to higher genera are briefly discussed.Comment: 10 page

    Vertices, Vortices & Interacting Surface Operators

    Full text link
    We show that the vortex moduli space in non-abelian supersymmetric N=(2,2) gauge theories on the two dimensional plane with adjoint and anti-fundamental matter can be described as an holomorphic submanifold of the instanton moduli space in four dimensions. The vortex partition functions for these theories are computed via equivariant localization. We show that these coincide with the field theory limit of the topological vertex on the strip with boundary conditions corresponding to column diagrams. Moreover, we resum the field theory limit of the vertex partition functions in terms of generalized hypergeometric functions formulating their AGT dual description as interacting surface operators of simple type. Analogously we resum the topological open string amplitudes in terms of q-deformed generalized hypergeometric functions proving that they satisfy appropriate finite difference equations.Comment: 22 pages, 4 figures; v.2 refs. and comments added; v.3 further comments and typo
    corecore