8 research outputs found

    Fast equilibration of silane/hydrogen plasmas in large area RF capacitive reactors monitored by optical emission spectroscopy

    No full text
    The optimal plasma parameters for plasma processing, such as deposition of microcrystalline silicon from silane and hydrogen, are generally chosen in steady-state discharge conditions. However, this steady state must be reached in a short time after plasma ignition to avoid significant film deposition in non-optimal conditions during the plasma transient phase. Simple and inexpensive time-resolved optical emission spectroscopy has been used to measure the plasma time evolution from ignition to steady-state conditions in a large area RF capacitive plasma reactor. Absolute values of silane and hydrogen molecular number densities, relative values of electron density, and qualitative information on electron temperature were obtained without the need for absolute intensity calibration. Apart from the experimental verification of constant electron temperature, the particular condition here is that the emission intensities should be followed from the instant of ignition, since the molecular densities are known at this instant. A plasma model for the reactor, and a dispersive axial flow model for the pumping line, were used to show why the plasma chemistry in a well-designed large area reactor generally reaches steady-state conditions in less than one second. The optimal design for fast equilibration is a closed, directly-pumped showerhead reactor with a uniform plasma which fills the whole reactor volume

    Mechanism of substrate charging after plasma processing

    No full text
    An electrostatic charge can be left on an insulating substrate after RF plasma processing, even though the plasma and surfaces are globally neutral. High voltages and breakdown can then occur when the substrate is manipulated. If the substrate is not a perfect insulator, charge appears on its back face where there is no contact with the plasma. In this case, the substrate sticks electrostatically to the electrode, and partial discharging can occur when it is lifted. Analysis of in situ charge measurements reveals the mechanism responsible for the charging, which is analogous to electrostatic chucking of the glass to the electrode when exposed to plasma
    corecore