637 research outputs found
State-insensitive bichromatic optical trapping
We propose a scheme for state-insensitive trapping of neutral atoms by using
light with two independent wavelengths. In particular, we describe the use of
trapping and control lasers to minimize the variance of the potential
experienced by a trapped Rb atom in ground and excited states. We present
calculated values of wavelength pairs for which the 5s and 5p_{3/2} levels have
the same ac Stark shifts in the presence of two laser fields.Comment: 5 pages, 4 figure
Helium 2 3S - 2 1S metrology at 1557 nm
An experiment is proposed to excite the 'forbidden' 1s2s 3S1 - 1s2s 1S0
magnetic dipole (M1) transition at 1557 nm in a collimated and slow atomic beam
of metastable helium atoms. It is demonstrated that an excitation rate of 5000
/s can be realised with the beam of a 2W narrowband telecom fiber laser
intersecting the atomic beam perpendicularly. A Doppler-limited sub-MHz
spectroscopic linewidth is anticipated. Doppler-free excitation of 2% of
trapped and cooled atoms may be realised in a one-dimensional optical lattice
geometry, using the 2W laser both for trapping and spectroscopy. The very small
(8 Hz) natural linewidth of this transition presents an opportunity for
accurate tests of atomic structure calculations of the helium atom. A
measurement of the 3He - 4He isotope shift allows for accurate determination of
the difference in nuclear charge radius of both isotopes.Comment: accepted for publication in Europhysics Letter
Resolving all-order method convergence problems for atomic physics applications
The development of the relativistic all-order method where all single,
double, and partial triple excitations of the Dirac-Hartree-Fock wave function
are included to all orders of perturbation theory led to many important results
for study of fundamental symmetries, development of atomic clocks, ultracold
atom physics, and others, as well as provided recommended values of many atomic
properties critically evaluated for their accuracy for large number of
monovalent systems. This approach requires iterative solutions of the
linearized coupled-cluster equations leading to convergence issues in some
cases where correlation corrections are particularly large or lead to an
oscillating pattern. Moreover, these issues also lead to similar problems in
the CI+all-order method for many-particle systems. In this work, we have
resolved most of the known convergence problems by applying two different
convergence stabilizer methods, reduced linear equation (RLE) and direct
inversion of iterative subspace (DIIS). Examples are presented for B, Al,
Zn, and Yb. Solving these convergence problems greatly expands the
number of atomic species that can be treated with the all-order methods and is
anticipated to facilitate many interesting future applications
Resonant ion-pair formation in electron recombination with HF^+
The cross section for resonant ion-pair formation in the collision of
low-energy electrons with HF^+ is calculated by the solution of the
time-dependent Schrodinger equation with multiple coupled states using a wave
packet method. A diabatization procedure is proposed to obtain the electronic
couplings between quasidiabatic potentials of ^1Sigma^+ symmetry for HF. By
including these couplings between the neutral states, the cross section for
ion-pair formation increases with about two orders of magnitude compared with
the cross section for direct dissociation. Qualitative agreement with the
measured cross section is obtained. The oscillations in the calculated cross
section are analyzed. The cross section for ion-pair formation in electron
recombination with DF^+ is calculated to determine the effect of isotopic
substitution.Comment: 12 pages, 12 figure
State-insensitive trapping of Rb atoms: linearly versus circularly polarized lights
We study the cancellation of differential ac Stark shifts in the 5s and 5p
states of rubidium atom using the linearly and circularly polarized lights by
calculating their dynamic polarizabilities. Matrix elements were calculated
using a relativistic coupled-cluster method at the single, double and important
valence triple excitations approximation including all possible non-linear
correlation terms. Some of the important matrix elements were further optimized
using the experimental results available for the lifetimes and static
polarizabilities of atomic states. "Magic wavelengths" are determined from the
differential Stark shifts and results for the linearly polarized light are
compared with the previously available results. Possible scope of facilitating
state-insensitive optical trapping schemes using the magic wavelengths for
circularly polarized light are discussed. Using the optimized matrix elements,
the lifetimes of the 4d and 6s states of this atom are ameliorated.Comment: 13 pages, 13 tables and 4 figure
Anomalously small blackbody radiation shift in Tl+ frequency standard
The operation of atomic clocks is generally carried out at room temperature,
whereas the definition of the second refers to the clock transition in an atom
at absolute zero. This implies that the clock transition frequency should be
corrected in practice for the effect of finite temperature of which the leading
contributor is the blackbody radiation (BBR) shift. In the present work, we
used configuration interaction + coupled-cluster method to evaluate
polarizabilities of the 6s^2 ^1S_0 and states of Tl ion; we
find a.u. and a.u.. The resulting
BBR shift of the 6s6p ^3P_0 - 6s^2 ^1S_0 Tl transition at is
Hz. This result demonstrates that near
cancelation of the and state polarizabilities in divalent B+,
Al+, In ions of group IIIB [Safronova \textit{et al.}, PRL 107, 143006
(2011)] continues for much heavier Tl, leading to anomalously small BBR
shift for this system. This calculation demonstrates that the BBR contribution
to the fractional frequency uncertainty of the Tl+ frequency standard at 300K
is . We find that Tl+ has the smallest fractional BBR shift
among all present or proposed frequency standards with the exception of Al+.Comment: 5 page
Spin gaps and spin-flip energies in density-functional theory
Energy gaps are crucial aspects of the electronic structure of finite and
extended systems. Whereas much is known about how to define and calculate
charge gaps in density-functional theory (DFT), and about the relation between
these gaps and derivative discontinuities of the exchange-correlation
functional, much less is know about spin gaps. In this paper we give
density-functional definitions of spin-conserving gaps, spin-flip gaps and the
spin stiffness in terms of many-body energies and in terms of single-particle
(Kohn-Sham) energies. Our definitions are as analogous as possible to those
commonly made in the charge case, but important differences between spin and
charge gaps emerge already on the single-particle level because unlike the
fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and
many-body spin gaps are predicted to differ, and the difference is related to
derivative discontinuities that are similar to, but distinct from, those
usually considered in the case of charge gaps. Both ensemble DFT and
time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities
from a suitable functional. We illustrate our findings by evaluating our
definitions for the Lithium atom, for which we calculate spin gaps and spin
discontinuities by making use of near-exact Kohn-Sham eigenvalues and,
independently, from the single-pole approximation to TDDFT. The many-body
corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single
particle calculations tend to overestimate spin gaps while they underestimate
charge gaps.Comment: 11 pages, 1 figure, 3 table
Magic-zero wavelengths of alkali-metal atoms and their applications
Using first-principles calculations, we identify "magic-zero" optical
wavelengths, \lambda_zero, for which the ground-state frequency-dependent
polarizabilities of alkali-metal atoms vanish. Our approach uses
high-precision, relativistic all-order methods in which all single, double, and
partial triple excitations of the Dirac-Fock wave functions are included to all
orders of perturbation theory. We discuss the use of magic-zero wavelengths for
sympathetic cooling in two-species mixtures of alkalis with group-II and other
elements of interest. Special cases in which these wavelengths coincide with
strong resonance transitions in a target system are identified.Comment: 6 page
Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission
We report here the fabrication of fiber chromatic dispersion compensators, along with the tests of those components in wavelength-division-multiplexed transmission at 10 Gb/s and an analysis of their performance by simulation
- …