787 research outputs found

    The influence of geometry, surface character and flexibility on the permeation of ions and water through biological pores

    Full text link
    A hydrophobic constriction site can act as an efficient barrier to ion and water permeation if its diameter is less than the diameter of an ion's first hydration shell. This hydrophobic gating mechanism is thought to operate in a number of ion channels, e.g. the nicotinic receptor, bacterial mechanosensitive channels (MscL and MscS) and perhaps in some potassium channels (e.g. KcsA, MthK, and KvAP). Simplified pore models allow one to investigate the primary characteristics of a conduction pathway, namely its geometry (shape, pore length, and radius), the chemical character of the pore wall surface, and its local flexibility and surface roughness. Our extended (ca. 0.1 \mu s) molecular dynamic simulations show that a short hydrophobic pore is closed to water for radii smaller than 0.45 nm. By increasing the polarity of the pore wall (and thus reducing its hydrophobicity) the transition radius can be decreased until for hydrophilic pores liquid water is stable down to a radius comparable to a water molecule's radius. Ions behave similarly but the transition from conducting to non-conducting pores is even steeper and occurs at a radius of 0.65 nm for hydrophobic pores. The presence of water vapour in a constriction zone indicates a barrier for ion permeation. A thermodynamic model can explain the behaviour of water in nanopores in terms of the surface tensions, which leads to a simple measure of "hydrophobicity" in this context. Furthermore, increased local flexibility decreases the permeability of polar species. An increase in temperature has the same effect, and we hypothesise that both effects can be explained by a decrease in the effective solvent-surface attraction which in turn leads to an increase in the solvent-wall surface free energy.Comment: Peer reviewed article appeared in Physical Biology http://www.iop.org/EJ/abstract/1478-3975/1/1/005

    Computational Analysis of the Interactions Between Carbon Nanotubes and Cell Membranes

    Get PDF

    Molecular Simulations of the Membrane-Associated State of the PTEN Tumour-Suppressor Protein

    Get PDF

    The MemProtMD database : a resource for membrane-embedded protein structures and their lipid interactions

    Get PDF
    Integral membrane proteins fulfil important roles in many crucial biological processes, including cell signalling, molecular transport and bioenergetic processes. Advancements in experimental techniques are revealing high resolution structures for an increasing number of membrane proteins. Yet, these structures are rarely resolved in complex with membrane lipids. In 2015, the MemProtMD pipeline was developed to allow the automated lipid bilayer assembly around new membrane protein structures, released from the Protein Data Bank (PDB). To make these data available to the scientific community, a web database (http://memprotmd.bioch.ox.ac.uk) has been developed. Simulations and the results of subsequent analysis can be viewed using a web browser, including interactive 3D visualizations of the assembled bilayer and 2D visualizations of lipid contact data and membrane protein topology. In addition, ensemble analyses are performed to detail conserved lipid interaction information across proteins, families and for the entire database of 3506 PDB entries. Proteins may be searched using keywords, PDB or Uniprot identifier, or browsed using classification systems, such as Pfam, Gene Ontology annotation, mpstruc or the Transporter Classification Database. All files required to run further molecular simulations of proteins in the database are provided

    The energetics of protein-lipid interactions as viewed by molecular simulations

    Get PDF
    Membranes are formed from a bilayer containing diverse lipid species with which membrane proteins interact. Thus, integral membrane proteins are embedded in a bilayer, where they interact with lipids from their surroundings, whilst peripheral membrane proteins bind to lipids at the surface of membranes. Lipid interactions can influence the function of membrane proteins, either directly or allosterically. Both experimental (structural) and computational approaches can reveal lipid binding sites on membrane proteins. It is therefore important to understand the free energies of these interactions. This affords a more complete view of the engagement of a particular protein with the biological membrane surrounding it. Here, we describe a number of computational approaches currently in use for this purpose, including recent advances using both free energy and unbiased simulation methods. In particular we focus on interactions of integral membrane proteins with cholesterol, and with anionic lipids such as phosphatidylinositol 4,5-bisphosphate and cardiolipin. Peripheral membrane proteins are exemplified via interactions of PH domains with phosphoinositide-containing membranes. We summarise the current state of the field and provide an outlook on likely future directions of investigation
    • …
    corecore