11 research outputs found
Neuromonitoring in Children with Cerebrovascular Disorders
BACKGROUND: Cerebrovascular disorders are an important cause of morbidity and mortality in children. The acute care of a child with an ischemic or hemorrhagic stroke or cerebral sinus venous thrombosis focuses on stabilizing the patient, determining the cause of the insult, and preventing secondary injury. Here, we review the use of both invasive and noninvasive neuromonitoring modalities in the care of pediatric patients with arterial ischemic stroke, nontraumatic intracranial hemorrhage, and cerebral sinus venous thrombosis. METHODS: Narrative review of the literature on neuromonitoring in children with cerebrovascular disorders. RESULTS: Neuroimaging, near-infrared spectroscopy, transcranial Doppler ultrasonography, continuous and quantitative electroencephalography, invasive intracranial pressure monitoring, and multimodal neuromonitoring may augment the acute care of children with cerebrovascular disorders. Neuromonitoring can play an essential role in the early identification of evolving injury in the aftermath of arterial ischemic stroke, intracranial hemorrhage, or sinus venous thrombosis, including recurrent infarction or infarct expansion, new or recurrent hemorrhage, vasospasm and delayed cerebral ischemia, status epilepticus, and intracranial hypertension, among others, and this, is turn, can facilitate real-time adjustments to treatment plans. CONCLUSIONS: Our understanding of pediatric cerebrovascular disorders has increased dramatically over the past several years, in part due to advances in the neuromonitoring modalities that allow us to better understand these conditions. We are now poised, as a field, to take advantage of advances in neuromonitoring capabilities to determine how best to manage and treat acute cerebrovascular disorders in children
The Spectrum of Quantitative EEG Utilization Across North America: A Cross-Sectional Survey
BACKGROUND: Continuous electroencephalography (cEEG) is commonly used for neuromonitoring in pediatric intensive care units (PICU); however, there are barriers to real-time interpretation of EEG data. Quantitative EEG (qEEG) transforms the EEG signal into time-compressed graphs, which can be displayed at the bedside. A survey was designed to understand current PICU qEEG use. METHODS: An electronic survey was sent to the Pediatric Neurocritical Care Research Group and Pediatric Status Epilepticus Research Group, and intensivists in 16 Canadian PICUs. Questions addressed demographics, qEEG acquisition and storage, clinical use, and education. RESULTS: Fifty respondents from 39 institutions completed the survey (response rate 53% [39 of 74 institutions]), 76% (37 of 50) from the United States and 24% (12 of 50) from Canada. Over half of the institutions (22 of 39 [56%]) utilize qEEG in their ICUs. qEEG use was associated with having a neurocritical care (NCC) service, ≥200 NCC consults/year, ≥1500 ICU admissions/year, and ≥4 ICU EEGs/day (P \u3c 0.05 for all). Nearly all users (92% [24 of 26]) endorsed that qEEG enhanced care of children with acute neurological injury. Lack of training in qEEG was identified as a common barrier [85% (22 of 26)]. Reviewing and reporting of qEEG was not standard at most institutions. Training was required by 14% (three of 22) of institutions, and 32% (seven of 22) had established curricula. CONCLUSIONS: ICU qEEG was used at more than half of the institutions surveyed, but review, reporting, and application of this tool remained highly variable. Although providers identify qEEG as a useful tool in patient management, further studies are needed to define clinically meaningful pediatric trends, standardize reporting, and enhance educate bedside providers
Neuromonitoring in neonatal critical care part I: neonatal encephalopathy and neonates with possible seizures
The blooming of neonatal neurocritical care over the last decade reflects substantial advances in neuromonitoring and neuroprotection. The most commonly used brain monitoring tools in the neonatal intensive care unit (NICU) are amplitude integrated EEG (aEEG), full multichannel continuous EEG (cEEG), and near-infrared spectroscopy (NIRS). While some published guidelines address individual tools, there is no consensus on consistent, efficient, and beneficial use of these modalities in common NICU scenarios. This work reviews current evidence to assist decision making for best utilization of neuromonitoring modalities in neonates with encephalopathy or with possible seizures. Neuromonitoring approaches in extremely premature and critically ill neonates are discussed separately in the companion paper. IMPACT: Neuromonitoring techniques hold promise for improving neonatal care. For neonatal encephalopathy, aEEG can assist in screening for eligibility for therapeutic hypothermia, though should not be used to exclude otherwise eligible neonates. Continuous cEEG, aEEG and NIRS through rewarming can assist in prognostication. For neonates with possible seizures, cEEG is the gold standard for detection and diagnosis. If not available, aEEG as a screening tool is superior to clinical assessment alone. The use of seizure detection algorithms can help with timely seizures detection at the bedside
Neuromonitoring in neonatal critical care part II: extremely premature infants and critically ill neonates
Neonatal intensive care has expanded from cardiorespiratory care to a holistic approach emphasizing brain health. To best understand and monitor brain function and physiology in the neonatal intensive care unit (NICU), the most commonly used tools are amplitude-integrated EEG, full multichannel continuous EEG, and near-infrared spectroscopy. Each of these modalities has unique characteristics and functions. While some of these tools have been the subject of expert consensus statements or guidelines, there is no overarching agreement on the optimal approach to neuromonitoring in the NICU. This work reviews current evidence to assist decision making for the best utilization of these neuromonitoring tools to promote neuroprotective care in extremely premature infants and in critically ill neonates. Neuromonitoring approaches in neonatal encephalopathy and neonates with possible seizures are discussed separately in the companion paper. IMPACT: For extremely premature infants, NIRS monitoring has a potential role in individualized brain-oriented care, and selective use of aEEG and cEEG can assist in seizure detection and prognostication. For critically ill neonates, NIRS can monitor cerebral perfusion, oxygen delivery, and extraction associated with disease processes as well as respiratory and hypodynamic management. Selective use of aEEG and cEEG is important in those with a high risk of seizures and brain injury. Continuous multimodal monitoring as well as monitoring of sleep, sleep-wake cycling, and autonomic nervous system have a promising role in neonatal neurocritical care
Neuromonitoring in neonatal critical care part I: neonatal encephalopathy and neonates with possible seizures.
The blooming of neonatal neurocritical care over the last decade reflects substantial advances in neuromonitoring and neuroprotection. The most commonly used brain monitoring tools in the neonatal intensive care unit (NICU) are amplitude integrated EEG (aEEG), full multichannel continuous EEG (cEEG), and near-infrared spectroscopy (NIRS). While some published guidelines address individual tools, there is no consensus on consistent, efficient, and beneficial use of these modalities in common NICU scenarios. This work reviews current evidence to assist decision making for best utilization of neuromonitoring modalities in neonates with encephalopathy or with possible seizures. Neuromonitoring approaches in extremely premature and critically ill neonates are discussed separately in the companion paper. IMPACT: Neuromonitoring techniques hold promise for improving neonatal care. For neonatal encephalopathy, aEEG can assist in screening for eligibility for therapeutic hypothermia, though should not be used to exclude otherwise eligible neonates. Continuous cEEG, aEEG and NIRS through rewarming can assist in prognostication. For neonates with possible seizures, cEEG is the gold standard for detection and diagnosis. If not available, aEEG as a screening tool is superior to clinical assessment alone. The use of seizure detection algorithms can help with timely seizures detection at the bedside
Neuromonitoring in neonatal critical care part II: extremely premature infants and critically ill neonates.
Neonatal intensive care has expanded from cardiorespiratory care to a holistic approach emphasizing brain health. To best understand and monitor brain function and physiology in the neonatal intensive care unit (NICU), the most commonly used tools are amplitude-integrated EEG, full multichannel continuous EEG, and near-infrared spectroscopy. Each of these modalities has unique characteristics and functions. While some of these tools have been the subject of expert consensus statements or guidelines, there is no overarching agreement on the optimal approach to neuromonitoring in the NICU. This work reviews current evidence to assist decision making for the best utilization of these neuromonitoring tools to promote neuroprotective care in extremely premature infants and in critically ill neonates. Neuromonitoring approaches in neonatal encephalopathy and neonates with possible seizures are discussed separately in the companion paper. IMPACT: For extremely premature infants, NIRS monitoring has a potential role in individualized brain-oriented care, and selective use of aEEG and cEEG can assist in seizure detection and prognostication. For critically ill neonates, NIRS can monitor cerebral perfusion, oxygen delivery, and extraction associated with disease processes as well as respiratory and hypodynamic management. Selective use of aEEG and cEEG is important in those with a high risk of seizures and brain injury. Continuous multimodal monitoring as well as monitoring of sleep, sleep-wake cycling, and autonomic nervous system have a promising role in neonatal neurocritical care
Development and Feasibility Testing of a Critical Care EEG Monitoring Database for Standardized Clinical Reporting and Multicenter Collaborative Research
© 2015 by the American Clinical Neurophysiology Society. Purpose: The rapid expansion of the use of continuous critical care electroencephalogram (cEEG) monitoring and resulting multicenter research studies through the Critical Care EEG Monitoring Research Consortium has created the need for a collaborative data sharing mechanism and repository. The authors describe the development of a research database incorporating the American Clinical Neurophysiology Society standardized terminology for critical care EEG monitoring. The database includes flexible report generation tools that allow for daily clinical use. Methods: Key clinical and research variables were incorporated into a Microsoft Access database. To assess its utility for multicenter research data collection, the authors performed a 21-center feasibility study in which each center entered data from 12 consecutive intensive care unit monitoring patients. To assess its utility as a clinical report generating tool, three large volume centers used it to generate daily clinical critical care EEG reports. Results: A total of 280 subjects were enrolled in the multicenter feasibility study. The duration of recording (median, 25.5 hours) varied significantly between the centers. The incidence of seizure (17.6%), periodic/rhythmic discharges (35.7%), and interictal epileptiform discharges (11.8%) was similar to previous studies. The database was used as a clinical reporting tool by 3 centers that entered a total of 3,144 unique patients covering 6,665 recording days. Conclusions: The Critical Care EEG Monitoring Research Consortium database has been successfully developed and implemented with a dual role as a collaborative research platform and a clinical reporting tool. It is now available for public download to be used as a clinical data repository and report generating tool