3 research outputs found
Long-term impact risk for (101955) 1999 RQ36
The potentially hazardous asteroid (101955) 1999 RQ36 has the possibility of
collision with the Earth in the latter half of the 22nd century, well beyond
the traditional 100-year time horizon for routine impact monitoring. The
probabilities accumulate to a total impact probability of approximately 10E-3,
with a pair of closely related routes to impact in 2182 comprising more than
half of the total. The analysis of impact possibilities so far in the future is
strongly dependent on the action of the Yarkovsky effect, which raises new
challenges in the careful assessment of longer term impact hazards.
Even for asteroids with very precisely determined orbits, a future close
approach to Earth can scatter the possible trajectories to the point that the
problem becomes like that of a newly discovered asteroid with a weakly
determined orbit. If the scattering takes place late enough so that the target
plane uncertainty is dominated by Yarkovsky accelerations then the thermal
properties of the asteroid,which are typically unknown, play a major role in
the impact assessment. In contrast, if the strong planetary interaction takes
place sooner, while the Yarkovsky dispersion is still relatively small compared
to that derived from the measurements, then precise modeling of the
nongravitational acceleration may be unnecessary.Comment: Reviewed figures and some text change
Nonlinear impact monitoring: line of variation searches for impactors
SUMMARY When a new near Earth asteroid is discovered, it is important to know whether or not there is the possibility of an impact with the Earth in the near future. In this paper, we describe the technical approaches employed by the two operational second-generation asteroid impact monitoring systems, CLOMON2 and Sentry, paying particular attention to the similarities and differences between these independent systems. The detection and characterization of a potential impact requires the propagation of the orbital probability density function from the time of discovery to the time of hypothetical impact. Since the N-body problem is not integrable, this can be done only by sampling the orbital elements space with a finite number of Virtual Asteroids (VAs), the orbit of each one being propagated numerically. Our methods, illustrated in this paper, use the Line Of Variation (LOV), a unidimensional subspace, to perform this sampling. The primary goal is to detect Virtual Impactors (VIs), which are regions in the initial conditions space leading to dynamically distinct collision solutions; then a probability integral needs to be computed on the volume of the VI. An important issue is how to assure completeness of such a search down to some impact probability threshold. This problem cannot be efficiently solved just by computing more VAs, but requires a geometric description of the behavior of the LOV in order to identify the critical segments of this curve. We have studied these behaviors on the Target Plane (TP) through our analytical theory and the output of many numerical tests. Assuming that the geometry is the simplest compatible with the data available from the sampling, we obtain a classification which allows us to use iterative methods, appropriate for each case, to find the closest approach distance possible along the LOV. After an LOV minimum has been identified, it is possible to use a probability density linearized at this point. However, when the cross section of the Earth is not crossed by the LOV, there is no guarantee that nonlinearity would be negligible in the direction on the TP transversal to the LOV. We describe how to test for such nonlinearity, and thus reduce or eliminate the possibility of spurious VIs. In this way, the performance of our impact monitoring systems has been significantly increased in comparison to the earlier and simpler solitary system. These more advanced systems have identified and then eliminated (through additional observations) more than one hundred cases of asteroids with VIs in the years 2002–2003
The Asteroid Identification Problem IV: Attributions
Existing archives of asteroid observations contain many objects with very short observed arcs. In this paper we present a method that we have used with considerable success to attribute these short arc \discoveries" to other objects with better dened orbits. The method consists of a three stage ltering process whereby several billion possible attribution/orbit pairs are systematically analyzed with more and more exact algorithms, at each stage rejecting improbable cases. The rst stage compares an attributable, by denition a synthetic observation representative of all the observations over a short arc, with the predicted observation for each available orbit. The second stage compares the proposed attributable observations with predicted positions from the known orbit using conventional linear covariance techniques, considering both the position and motion on the celestial sphere. In the nal lter we attempt to compute a best tting orbit by dierential corrections and using the com..