4,162 research outputs found

    The H1 Forward Track Detector at HERA II

    Full text link
    In order to maintain efficient tracking in the forward region of H1 after the luminosity upgrade of the HERA machine, the H1 Forward Track Detector was also upgraded. While much of the original software and techniques used for the HERA I phase could be reused, the software for pattern recognition was completely rewritten. This, along with several other improvements in hit finding and high-level track reconstruction, are described in detail together with a summary of the performance of the detector.Comment: Minor revision requested by journal (JINST) edito

    Approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon with inner voids

    Full text link
    We have performed an approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon (a-Si:H) using a molecular dynamics method. A 216 atom model for pure amorphous silicon (a-Si) has been employed as a starting point for our a-Si:H models with voids that were made by removing a cluster of silicon atoms out of the bulk and terminating the resulting dangling bonds with hydrogens. Our calculation shows that the presence of voids leads to localized low energy (30-50 cm^{-1}) states in the vibrational spectrum of the system. The nature and localization properties of these states are analyzed by various visualization techniques.Comment: 15 pages with 6 PS figures, to appear in PRB in December 199

    Local origins impart conserved bone type-related differences in human osteoblast behaviour

    Get PDF
    Osteogenic behaviour of osteoblasts from trabecular, cortical and subchondral bone were examined to determine any bone type-selective differences in samples from both osteoarthritic (OA) and osteoporotic (OP) patients. Cell growth, differentiation; alkaline phosphatase (TNAP) mRNA and activity, Runt-related transcription factor-2 (RUNX2), SP7-transcription factor (SP7), bone sialoprotein-II (BSP-II), osteocalcin/bone gamma-carboxyglutamate (BGLAP), osteoprotegerin (OPG, TNFRSF11B), receptor activator of nuclear factor-κβ ligand (RANKL, TNFSF11) mRNA levels and proangiogenic vascular endothelial growth factor-A (VEGF-A) mRNA and protein release were assessed in osteoblasts from paired humeral head samples from age-matched, human OA/OP (n = 5/4) patients. Initial outgrowth and increase in cell number were significantly faster (p < 0.01) in subchondral and cortical than trabecular osteoblasts, in OA and OP, and this bone type-related differences were conserved despite consistently faster growth in OA. RUNX2/SP7 levels and TNAP mRNA and protein activity were, however, greater in trabecular than subchondral and cortical osteoblasts in OA and OP. BSP-II levels were significantly greater in trabecular and lowest in cortical osteoblasts in both OA and OP. In contrast, BGLAP levels showed divergent bone type-selective behaviour; highest in osteoblasts from subchondral origins in OA and trabecular origins in OP. We found virtually identical bone type-related differences, however, in TNFRSF11B:TNFSF11 in OA and OP, consistent with greater potential for paracrine effects on osteoclasts in trabecular osteoblasts. Subchondral osteoblasts (OA) exhibited highest VEGF-A mRNA levels and release. Our data indicate that human osteoblasts in trabecular, subchondral and cortical bone have inherent, programmed diversity, with specific bone type-related differences in growth, differentiation and pro-angiogenic potential in vitro

    Inclusion of Experimental Information in First Principles Modeling of Materials

    Full text link
    We propose a novel approach to model amorphous materials using a first principles density functional method while simultaneously enforcing agreement with selected experimental data. We illustrate our method with applications to amorphous silicon and glassy GeSe2_2. The structural, vibrational and electronic properties of the models are found to be in agreement with experimental results. The method is general and can be extended to other complex materials.Comment: 11 pages, 8 PostScript figures, submitted to J. Phys.: Condens. Matter in honor of Mike Thorpe's 60th birthda

    Mechanisms limiting the coherence time of spontaneous magnetic oscillations driven by DC spin-polarized currents

    Full text link
    The spin-transfer torque from a DC spin-polarized current can generate highly-coherent magnetic precession in nanoscale magnetic-multilayer devices. By measuring linewidths of spectra from the resulting resistance oscillations, we argue that the coherence time can be limited at low temperature by thermal deflections about the equilibrium magnetic trajectory, and at high temperature by thermally-activated transitions between dynamical modes. Surprisingly, the coherence time can be longer than predicted by simple macrospin simulations.Comment: 12 pages, 4 figure

    A new multi-center approach to the exchange-correlation interactions in ab initio tight-binding methods

    Full text link
    A new approximate method to calculate exchange-correlation contributions in the framework of first-principles tight-binding molecular dynamics methods has been developed. In the proposed scheme on-site (off-site) exchange-correlation matrix elements are expressed as a one-center (two-center) term plus a {\it correction} due to the rest of the atoms. The one-center (two-center) term is evaluated directly, while the {\it correction} is calculated using a variation of the Sankey-Niklewski \cite{Sankey89} approach generalized for arbitrary atomic-like basis sets. The proposed scheme for exchange-correlation part permits the accurate and computationally efficient calculation of corresponding tight-binding matrices and atomic forces for complex systems. We calculate bulk properties of selected transition (W,Pd), noble (Au) or simple (Al) metals, a semiconductor (Si) and the transition metal oxide TiO2O_2 with the new method to demonstrate its flexibility and good accuracy.Comment: 17 pages, 5 figure

    EFFECTS OF 90-MINUTE MATCH SIMULATION ON WHOLE-BODY DYNAMIC STABILITY IN UNANTICIPATED SIDE CUTTING

    Get PDF
    The purpose of this investigation was to identify the effects of soccer match-specific physical exertion on deployment of movement strategies to control the centre of mass (CoM) in the medio-lateral direction during unanticipated side cutting. Twenty-one healthy male recreational soccer players completed a 90-minute over-ground soccer match-simulation. Integrated to the match-simulation were 45° unanticipated side cutting tasks using a 4-5 m·s-1 approach speed. Performance outcomes, peak knee abduction moments (peak KAM), and whole-body dynamic stability variables were calculated for the side cutting tasks. A reduction in the capacity to generate medio-lateral forces from sagittal methods may explain the drop in average medial CoM acceleration and change of direction angle. An ankle movement strategy, represented by a lateral movement of the centre of pressure (CoP) position, appears to have been deployed to mitigate any additional drop in side-cutting performance. A single match-simulation may be insufficient to increase injury risk markers unless the individuals are already showing signs of a reduced ability to mitigate unnecessary movement deviations

    First-Principles Studies of Hydrogenated Si(111)--7Ă—\times7

    Full text link
    The relaxed geometries and electronic properties of the hydrogenated phases of the Si(111)-7Ă—\times7 surface are studied using first-principles molecular dynamics. A monohydride phase, with one H per dangling bond adsorbed on the bare surface is found to be energetically favorable. Another phase where 43 hydrogens saturate the dangling bonds created by the removal of the adatoms from the clean surface is found to be nearly equivalent energetically. Experimental STM and differential reflectance characteristics of the hydrogenated surfaces agree well with the calculated features.Comment: REVTEX manuscript with 3 postscript figures, all included in uu file. Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.htm

    Consensus of travel direction is achieved by simple copying, not voting, in free-ranging goats

    Get PDF
    For group-living animals to remain cohesive they must agree on where to travel. Theoretical models predict shared group decisions should be favoured, and a number of empirical examples support this. However, the behavioural mechanisms that underpin shared decision-making are not fully understood. Groups may achieve consensus of direction by active communication of individual preferences (i.e. voting), or by responding to each other's orientation and movement (i.e. copying). For example, African buffalo (Syncerus caffer) are reported to use body orientation to vote and indicate their preferred direction to achieve a consensus on travel direction, while golden shiners (Notemigonus crysoleucas) achieve consensus of direction by responding to the movement cues of their neighbours. Here, we present a conceptual model (supported by agent-based simulations) that allows us to distinguish patterns of motion that represent voting or copying. We test our model predictions using high-resolution GPS and magnetometer data collected from a herd of free-ranging goats (Capra aegagrus hircus) in the Namib Desert, Namibia. We find that decisions concerning travel direction were more consistent with individuals copying one another's motion and find no evidence to support the use of voting with body orientation. Our findings highlight the role of simple behavioural rules for collective decision-making by animal groups
    • …
    corecore