26 research outputs found

    New Computer Technique for Root Locus Analysis

    Get PDF
    Mechanical Engineerin

    Domain Adaptation Techniques for Machine Translation and Their Evaluation in a Real-World Setting

    Get PDF
    Abstract. Statistical Machine Translation (SMT) is currently used in real-time and commercial settings to quickly produce initial translations for a document which can later be edited by a human. The SMT models specialized for one domain often perform poorly when applied to other domains. The typical assumption that both training and testing data are drawn from the same distribution no longer applies. This paper evaluates domain adaptation techniques for SMT systems in the context of end-user feedback in a real world application. We present our experiments using two adaptive techniques, one relying on log-linear models and the other using mixture models. We describe our experimental results on legal and government data, and present the human evaluation effort for post-editing in addition to traditional automated scoring techniques (BLEU scores). The human effort is based primarily on the amount of time and number of edits required by a professional post-editor to improve the quality of machine-generated translations to meet industry standards. The experimental results in this paper show that the domain adaptation techniques can yield a significant increase in BLEU score (up to four points) and a significant reduction in post-editing time of about one second per word

    Improvements in hierarchical phrase-based Statistical Machine Translation

    Get PDF
    Hierarchical phrase-based translation (Hiero) is a statistical machine translation (SMT) model that encodes translation as a synchronous context-free grammar derivation between source and target language strings (Chiang, 2005; Chiang, 2007). Hiero models are more powerful than phrase-based models in capturing complex source-target reordering as well as discontiguous phrases, while being easier to estimate and decode with compared to their full syntax-based counterparts. In this thesis, we propose improvements to two broad aspects of the Hiero translation pipeline: i) learning Hiero translation model and estimating their parameters and ii) parameter tuning for discriminative log-linear models that are used to decode with such features. We use our own open-source implementation of Hiero called Kriya (Sankaran et al., 2012b) for all the experiments in this thesis. This thesis contains the following specific contributions: We propose a Bayesian model for learning Hiero grammars as an alternative to the heuristic method usually used in Hiero. Our model learns a peaked distribution of grammars, which consistently performs better than the heuristically extracted grammars across several language pairs (Sankaran et al., 2013a). We propose a novel unified-cascade framework for jointly learning alignments and the Hiero translation rules by removing the disconnect between the alignments and extracted synchronous context-free grammar. This is the first time a joint training framework is being proposed for Hiero, where we iterate the two step inference so that it learns in alternate iterations the phrase alignments and then the Hiero rules that are consistent with alignments. We extend our Bayesian model for extracting compact Hiero translation rules using arity-1 grammars, resulting in up to 57% reduction in model size while retaining the translation performance (Sankaran et al., 2011; Sankaran et al., 2012a). We propose several novel approaches for parameter tuning of discriminative log-linear models for SMT which can be used for jointly optimizing towards multiple evaluation metrics. We show that our methods for multi-objective tuning for SMT yield substantial gains in translation quality measured through automatic as well as human evaluations (Sankaran et al., 2013b; Duh et al., 2013)

    Compact Rule Extraction for Hierarchical Phrase-based Translation

    Full text link
    This paper introduces two novel approaches for extracting compact grammars for hierarchical phrase-based translation. The first is a combinatorial optimization approach and the second is a Bayesian model over Hiero grammars using Variational Bayes for inference. In contrast to the conventional Hiero (Chiang, 2007) rule extraction algorithm, our methods extract compact models reducing model size by 17.8 % to 57.6 % without impacting translation quality across several language pairs. The Bayesian model is particularly effective for resource-poor languages with evidence from Korean-English translation. To the best of our knowledge, this is the first alternative to Hiero-style rule extraction that finds a more compact synchronous grammar without hurting translation performance.
    corecore