13 research outputs found
Tom and Jerry Based Multipath Routing with Optimal K-medoids for choosing Best Clusterhead in MANET
Given the unpredictable nature of a MANET, routing has emerged as a major challenge in recent years. For effective routing in a MANET, it is necessary to establish both the route discovery and the best route selection from among many routes. The primary focus of this investigation is on finding the best path for data transmission in MANETs. In this research, we provide an efficient routing technique for minimising the time spent passing data between routers. Here, we employ a routing strategy based on Tom and Jerry Optimization (TJO) to find the best path via the MANET's routers, called Ad Hoc On-Demand Distance Vector (AODV). The AODV-TJO acronym stands for the suggested approach. This routing technique takes into account not just one but three goal functions: total number of hops. When a node or connection fails in a network, rerouting must be done. In order to prevent packet loss, the MANET employs this rerouting technique. Analyses of AODV-efficacy TJO's are conducted, and results are presented in terms of energy use, end-to-end latency, and bandwidth, as well as the proportion of living and dead nodes. Vortex Search Algorithm (VSO) and cuckoo search are compared to the AODV-TJO approach in terms of performance. Based on the findings, the AODV-TJO approach uses 580 J less energy than the Cuckoo search algorithm when used with 500 nodes
Recommended from our members
High beta tokamak research. Progress report, November 1991--December 1992
This report discussion the following on high beta tokamaks: basic machine operation; operational parameter space; and plasma impurity control
Recommended from our members
High beta tokamak research
This report discussion the following on high beta tokamaks: basic machine operation; operational parameter space; and plasma impurity control
STABILIZATION OF KINK INSTABILITIES BY EDDY CURRENTS IN A SEGMENTED WALL AND COMPARISON WITH IDEAL MHD THEORY
ABSTRACT. The characteristics of external kink instabilities observed during wall stabilization studies in the HBT-EP tokamak have been compared with the predictions of ideal MHD theory, in order to examine the stabilizing role of a resistive wall that is segmented both toroidally and poloidally. The reconstructed equilibria, for discharges with different plasma-wall configurations, are consistent with external and internal magnetic measurements, measured soft X ray profiles and measured equilibrium wall eddy currents. The stability analysis of these equilibria predicts patterns of instability induced eddy currents for a model wall that is continuous and perfectly conducting, and these patterns are in good agreement with the ones observed on the HBT-EP segmented wall. These eddy currents account for the observed stabilization of fast ideal modes when the wall is fully inserted, consistent with the prediction of marginal stability
SMARCE1 deficiency generates a targetable mSWI/SNF dependency in clear cell meningioma
SMARCE1 loss destabilizes the canonical BAF complex and increases the formation of BRD9-containing non-canonical (ncBAF) complexes. SMARCE1-deficient cells, which are a model for clear cell meningioma, are sensitive to ncBAF complex inhibition. Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes establish and maintain chromatin accessibility and gene expression, and are frequently perturbed in cancer. Clear cell meningioma (CCM), an aggressive tumor of the central nervous system, is uniformly driven by loss of SMARCE1, an integral subunit of the mSWI/SNF core. Here, we identify a structural role for SMARCE1 in selectively stabilizing the canonical BAF (cBAF) complex core-ATPase module interaction. In CCM, cBAF complexes fail to stabilize on chromatin, reducing enhancer accessibility, and residual core module components increase the formation of BRD9-containing non-canonical BAF (ncBAF) complexes. Combined attenuation of cBAF function and increased ncBAF complex activity generates the CCM-specific gene expression signature, which is distinct from that of NF2-mutated meningiomas. Importantly, SMARCE1-deficient cells exhibit heightened sensitivity to small-molecule inhibition of ncBAF complexes. These data inform the function of a previously elusive SWI/SNF subunit and suggest potential therapeutic approaches for intractable SMARCE1-deficient CCM tumors