32 research outputs found

    Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications

    Get PDF
    One of the major drawbacks found in most bone tissue engineering approaches developed so far consists in the lack of strategies to promote vascularisation. Some studies have addressed different issues that may enhance vascularisation in tissue engineered constructs, most of them involving the use of growth factors (GFs) that are involved in the restitution of the vascularity in a damaged zone. The use of sustained delivery systems might also play an important role in the re-establishment of angiogenesis. In this study, !-carrageenan, a naturally occurring polymer, was used to develop hydrogel beads with the ability to incorporate GFs with the purpose of establishing an effective angiogenesis mechanism. Some processing parameters were studied and their influence on the final bead properties was evaluated. Platelet derived growth factor (PDGF-BB) was selected as the angiogenic factor to incorporate in the developed beads, and the results demonstrate the achievement of an efficient encapsulation and controlled release profile matching those usually required for the development of a fully functional vascular network. In general, the obtained results demonstrate the potential of these systems for bone tissue engineering applications.This work was supported by the European NoE EXPERTISSUES (NMP3-CT-2004-500283), the European STREP HIPPOCRATES (NMP3-CT-2003-505758), and by the Portuguese Foundation for Science and Technology (FCT) through the project PTDC/FIS/68517/2006 and through the V. Espirito Santo's Ph.D. grant (SFRH/BD/39486/2007)

    Landscapes of Urbanization and De-Urbanization: A Large-Scale Approach to Investigating the Indus Civilization's Settlement Distributions in Northwest India.

    Get PDF
    Survey data play a fundamental role in studies of social complexity. Integrating the results from multiple projects into large-scale analyses encourages the reconsideration of existing interpretations. This approach is essential to understanding changes in the Indus Civilization's settlement distributions (ca. 2600-1600 b.c.), which shift from numerous small-scale settlements and a small number of larger urban centers to a de-nucleated pattern of settlement. This paper examines the interpretation that northwest India's settlement density increased as Indus cities declined by developing an integrated site location database and using this pilot database to conduct large-scale geographical information systems (GIS) analyses. It finds that settlement density in northwestern India may have increased in particular areas after ca. 1900 b.c., and that the resulting landscape of de-urbanization may have emerged at the expense of other processes. Investigating the Indus Civilization's landscapes has the potential to reveal broader dynamics of social complexity across extensive and varied environments.ER

    Effect of hydrophilic swellable polymers on dissolution enhancement of carbamazepine solid dispersions studied using response surface methodology

    No full text
    The objective of this work was to study dissolution enhancement efficiency and solid dispersion formation ability of hydrophilic swellable polymers such as sodium carboxymethyl cellulose (Na-CMC), sodium starch glycolate (SSG), pregelatinized starch (PGS), and hydroxypropylmethyl cellulose (HPMC) with carbamazepine using 32 full factorial design for each of the polymers. Solid dispersions of carbamazepine were prepared using solvent evaporation method with around 70% solvent recovery. The independent variables were the amount of polymer and organic solvent. The dependent variables assessed were percentage drug dissolved at various time points and dispersion efficiency (ie, in terms of particle size of solid dispersion). Solid dispersions were evaluated for percentage drug dissolved, wettability, differential scanning calorimetry, scanning electron microscopy, and angle of repose. Multiple linear regression of results obtained led to equations, which generated contour plots to relate the dependent variables. Similarity factor and mean dissolution time were used to compare dissolution patterns obtained in distilled water and simulated gastric fluid United States Pharmacopeia (USP) XXVI of pH 1.2. Maximum drug dissolution was obtained with polymer order Na-CMC>SSG>PGS>HPMC. Particle size of drug was reduced ≈ 10–15, 3–5, 5–7, and 10–25 times in Na-CMC, SSG, PGS, and HPMC solid dispersions, respectively; whereas wettability of solid dispersions was found in the order of Na-CMC>HPMC>PGS>SSG. Angle of repose was found to be in the range of 29° to 35° for all solid dispersions, which shows good flowability characteristics. HPMC showed increase in drug dissolution up to an optimized level; however, furthers increase in its concentration decreased drug dissolution

    Prolonged Intragastric Drug Delivery Mediated by EudragitÂźE-Carrageenan Polyelectrolyte Matrix Tablets

    No full text
    Interpolyelectrolyte (IPE) complexation between carrageenan (CG) and Eudragit E (EE) was studied in 0.1 M HCl and was used to develop floating matrix tablets aimed to prolong gastric-residence time and sustain delivery of the loaded drug. The optimum EE/CG IPE complexation weight ratio (0.6) was determined in 0.1 M HCl using apparent viscosity measurements. The IPE complex was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Metronidazole matrix tablets were prepared by direct compression using EE, CG, or hybrid EE/CG with ratio optimal for IPE complexation. Corresponding effervescent tablets were prepared by including Na bicarbonate as an effervescent agent. Tablets were evaluated for in vitro buoyancy and drug release in 0.1 M HCl. Both CG and EE–CG effervescent matrices (1:2 drug to polymer weight ratio, 60 mg Na bicarbonate) achieved fast and prolonged floating with floating lag times less than 30 s and floating duration of more than 10 h. The corresponding EE effervescent matrices showed delayed floating and rapid drug release, and completely dissolved after 3 h of dissolution. CG matrices showed an initial burst drug release (48.3 ± 5.0% at 1 h) followed by slow drug release over 8 h. EE–CG matrices exhibited sustained drug release in almost zero-order manner for 10 h (68.2 ± 6.6%). The dissolution data of these matrices were fitted to different dissolution models. It was found that drug release followed zero-order kinetics and was controlled by the superposition of the diffusion and erosion
    corecore