3,919 research outputs found

    Constraints on the Neutrino Parameters from the `Rise-up' in the Boron Neutrino Spectrum at Low Energies

    Full text link
    The rise-up in boron neutrino spectrum at low energies has been studied within the framework of `pure LMA' scenario. Indirect bounds on the spectral `upturn' have been obtained from the available solar neutrino data. These bounds have been used to demonstrate the efficacy of the precision measurements of the `upturn' for further constraining the neutrino parameter space allowed by SNO salt phase data. The sterile neutrino flux has been constrained in the light of the recent 766.3 Ty KamLAND spectral data.Comment: Latex 10pages including 3 postscript figure

    The Many Electron Ground State of the Adiabatic Holstein Model in Two and Three Dimensions

    Full text link
    We present the complete ground state phase diagram of the Holstein model in two and three dimension considering the phonon variables to be classical. We first establish the overall structure of the phase diagram by using exact diagonalisation based Monte Carlo (ED-MC) on small lattices and then use a new ``travelling cluster'' approximation (TCA) for annealing the phonon degrees of freedom on large lattices. The phases that emerge include a Fermi liquid (FL), with no lattice distortions, an insulating polaron liquid (PL) at strong coupling, and a charge ordered insulating (COI) phase around half- filling. The COI phase is separated from the Fermi liquid by a regime of phase coexistence whose width grows with increasing electron-phonon coupling. We provide results on the electronic density of states, the COI order parameter, and the spatial organisation of polaronic states, for arbitrary density and electron-phonon coupling. The results highlight the crucial role of spatial correlations in this strong coupling problem.Comment: Final versio

    Detection of gravitational waves from inspiraling compact binaries using a network of interferometric detectors

    Full text link
    We formulate the data analysis problem for the detection of the Newtonian waveform from an inspiraling compact-binary by a network of arbitrarily oriented and arbitrarily distributed laser interferometric gravitational wave detectors. We obtain for the first time the relation between the optimal statistic and the magnitude of the network correlation vector, which is constructed from the matched network-filter. This generalizes the calculation reported in an earlier work (gr-qc/9906064), where the detectors are taken to be coincident.Comment: 6 pages, RevTeX. Based on talk given at GWDAW-99, Rom

    Distributed Kernel Regression: An Algorithm for Training Collaboratively

    Full text link
    This paper addresses the problem of distributed learning under communication constraints, motivated by distributed signal processing in wireless sensor networks and data mining with distributed databases. After formalizing a general model for distributed learning, an algorithm for collaboratively training regularized kernel least-squares regression estimators is derived. Noting that the algorithm can be viewed as an application of successive orthogonal projection algorithms, its convergence properties are investigated and the statistical behavior of the estimator is discussed in a simplified theoretical setting.Comment: To be presented at the 2006 IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13-17, 200

    Consistency in Models for Distributed Learning under Communication Constraints

    Full text link
    Motivated by sensor networks and other distributed settings, several models for distributed learning are presented. The models differ from classical works in statistical pattern recognition by allocating observations of an independent and identically distributed (i.i.d.) sampling process amongst members of a network of simple learning agents. The agents are limited in their ability to communicate to a central fusion center and thus, the amount of information available for use in classification or regression is constrained. For several basic communication models in both the binary classification and regression frameworks, we question the existence of agent decision rules and fusion rules that result in a universally consistent ensemble. The answers to this question present new issues to consider with regard to universal consistency. Insofar as these models present a useful picture of distributed scenarios, this paper addresses the issue of whether or not the guarantees provided by Stone's Theorem in centralized environments hold in distributed settings.Comment: To appear in the IEEE Transactions on Information Theor
    • …
    corecore