5,078 research outputs found

    Asymmetric Two-component Fermion Systems in Strong Coupling

    Full text link
    We study the phase structure of a dilute two-component Fermi system with attractive interactions as a function of the coupling and the polarization or number difference between the two components. In weak coupling, a finite number asymmetry results in phase separation. A mixed phase containing symmetric superfluid matter and an asymmetric normal phase is favored. With increasing coupling strength, we show that the stress on the superfluid phase to accommodate a number asymmetry increases. Near the infinite-scattering length limit, we calculate the single-particle excitation spectrum and the ground-state energy at various polarizations. A picture of weakly-interacting quasi-particles emerges for modest polarizations. In this regime near infinite scattering length, and for modest polarizations, a homogeneous phase with a finite population of excited quasi-particle states characterized by a gapless spectrum should be favored over the phase separated state. These states may be realized in cold atom experiments.Comment: 4 pages, 3 figur

    Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides

    Get PDF
    Fiber taper waveguides are used to improve the efficiency of room temperature photoluminescence measurements of AlGaAs microdisk resonant cavities with embedded self-assembled InAs quantum dots. As a near-field collection optic, the fiber taper improves the collection efficiency from microdisk lasers by a factor of ~ 15-100 times in comparison to conventional normal incidence free-space collection techniques. In addition, the fiber taper can serve as a efficient means for pumping these devices, and initial measurements employing fiber pumping and collection are presented. Implications of this work towards chip-based cavity quantum electrodynamics experiments are discussed.Comment: 10 pages, 7 figure

    Mesonic Excitations of QGP: Study with an Effective Model

    Full text link
    We study the correlations between quark-antiquark pairs in different quantum number channels in a deconfined plasma by using an effective model of QCD. Using the three flavour PNJL model, the finite temperature spectral functions for different mesonic states are studied at zero and nonzero quark chemical potentials. It is found that in the η\eta channel resonance structures survive above the chiral transition temperature \tc, while the kaonic states seem to get washed off just above \tc. The sensitivity of the structures to the anomaly term are carefully investigated.Comment: 15page

    Electronic screening and damping in magnetars

    Full text link
    We calculate the screening of the ion-ion potential due to electrons in the presence of a large background magnetic field, at densities of relevance to neutron star crusts. Using the standard approach to incorporate electron screening through the one-loop polarization function, we show that the magnetic field produces important corrections both at short and long distances. In extreme fields, realized in highly magnetized neutron stars called magnetars, electrons occupy only the lowest Landau levels in the relatively low density region of the crust. Here our results show that the screening length for Coulomb interactions between ions can be smaller than the inter-ion spacing. More interestingly, we find that the screening is anisotropic and the screened potential between two static charges exhibits long range Friedel oscillations parallel to the magnetic field. This long-range oscillatory behavior is likely to affect the lattice structure of ions, and can possibly create rod-like structures in the magnetar crusts. We also calculate the imaginary part of the electron polarization function which determines the spectrum of electron-hole excitations and plays a role in damping lattice phonon excitations. We demonstrate that even for modest magnetic fields this damping is highly anisotropic and will likely lead to anisotropic phonon heat transport in the outer neutron star crust.Comment: 14 pages, 5 Figure

    Concentration of risk measures: A Wasserstein distance approach

    Full text link
    Known finite-sample concentration bounds for the Wasserstein distance between the empirical and true distribution of a random variable are used to derive a two-sided concentration bound for the error between the true conditional value-at-risk (CVaR) of a (possibly unbounded) random variable and a standard estimate of its CVaR computed from an i.i.d. sample. The bound applies under fairly general assumptions on the random variable, and improves upon previous bounds which were either one sided, or applied only to bounded random variables. Specializations of the bound to sub-Gaussian and sub-exponential random variables are also derived. Using a different proof technique, the results are extended to the class of spectral risk measures having a bounded risk spectrum. A similar procedure is followed to derive concentration bounds for the error between the true and estimated Cumulative Prospect Theory (CPT) value of a random variable, in cases where the random variable is bounded or sub-Gaussian. These bounds are shown to match a known bound in the bounded case, and improve upon the known bound in the sub-Gaussian case. The usefulness of the bounds is illustrated through an algorithm, and corresponding regret bound for a stochastic bandit problem, where the underlying risk measure to be optimized is CVaR

    Isospin asymmetry and type-I superconductivity in neutron star matter

    Full text link
    It has been argued by Buckley et. al.(Phys. Rev. Lett. 92, 151102, 2004) that nuclear matter is a type-I rather than a type-II superconductor. The suggested mechanism is a strong interaction between neutron and proton Cooper pairs, which arises from an assumed U(2) symmetry of the effective potential, which is supposed to originate in isospin symmetry of the underlying nuclear interactions. To test this claim, we perform an explicit mean-field calculation of the effective potential of the Cooper pairs in a model with a simple four-point pairing interaction. In the neutron star context, matter is very neutron rich with less than 10% protons, so there is no neutron-proton pairing. We find that under these conditions our model shows no interaction between proton Cooper pairs and neutron Cooper pairs at the mean-field level. We estimate the leading contribution beyond mean field and find that it is is small and attractive at weak coupling.Comment: 7 pages, 2 figure

    A Mean Field Analysis of Pairing in Asymmetric Fermi Systems at Finite Temperature

    Full text link
    We study the phase diagram of a two component Fermi system with a weak attractive interaction. Our analysis includes the leading order Hartree energy shifts and pairing correlations at finite temperature and chemical potential difference between the two fermion species. We show that in an asymmetric system, the Hartree shift to the single particle energies are important for the phase competition between normal and superfluid phase and can change the phase transition curve qualitatively. At large asymmetry we find that a novel but somewhat fragile superfluid state can be favored due to finite temperature effects. We also investigate the transition between the normal phase and an inhomogeneous superfluid phase to study how gradient instabilities evolve with temperature and asymmetry. Finally, we adopt our analysis to study the density profiles of similar asymmetric Fermi systems that are being observed in cold atom experiments.Comment: 17 pages, 7 figure

    Clostridium difficile infection in the United States: A national study assessing preventive practices used and perceptions of practice evidence

    Get PDF
    We surveyed 571 US hospitals about practices used to prevent Clostridium difficile infection (CDI). Most hospitals reported regularly using key CDI prevention practices, and perceived their strength of evidence as high. The largest discrepancy between regular use and perceived evidence strength occurred with antimicrobial stewardship programs.Infect. Control Hosp. Epidemiol. 2015;36(8):969–971</jats:p
    corecore