3,330 research outputs found
Artifact reduction for separable non-local means
It was recently demonstrated [J. Electron. Imaging, 25(2), 2016] that one can
perform fast non-local means (NLM) denoising of one-dimensional signals using a
method called lifting. The cost of lifting is independent of the patch length,
which dramatically reduces the run-time for large patches. Unfortunately, it is
difficult to directly extend lifting for non-local means denoising of images.
To bypass this, the authors proposed a separable approximation in which the
image rows and columns are filtered using lifting. The overall algorithm is
significantly faster than NLM, and the results are comparable in terms of PSNR.
However, the separable processing often produces vertical and horizontal
stripes in the image. This problem was previously addressed by using a
bilateral filter-based post-smoothing, which was effective in removing some of
the stripes. In this letter, we demonstrate that stripes can be mitigated in
the first place simply by involving the neighboring rows (or columns) in the
filtering. In other words, we use a two-dimensional search (similar to NLM),
while still using one-dimensional patches (as in the previous proposal). The
novelty is in the observation that one can use lifting for performing
two-dimensional searches. The proposed approach produces artifact-free images,
whose quality and PSNR are comparable to NLM, while being significantly faster.Comment: To appear in Journal of Electronic Imagin
Shear viscosity due to the Landau damping from quark-pion interaction
We have calculated the shear viscosity coefficient of the strongly
interacting matter in the relaxation time approximation, where a quasi particle
description of quarks with its dynamical mass is considered from NJL model. Due
to the thermodynamic scattering of quarks with pseudo scalar type condensate
(i.e. pion), a non zero Landau damping will be acquired by the propagating
quarks. This Landau damping may be obtained from the Landau cut contribution of
the in-medium self-energy of quark-pion loop, which is evaluated in the
framework of real-time thermal field theory
QCD phase transition in rotaing neutron star, Neutrino beaming and Gamma-ray bursters
We have studied the emission of neutrinos from a rotating hybrid star. We
find that the emission is predominantly confined to a very small angle,
provided the core of the star is in a mixed phase of quarks and hadrons and the
size of such a mixed phase is small. Annihilation of neutrinos to produce gamma
rays has been discussed. The estimated duration of the burst is found to be
within the observational range.Comment: Modified manuscript with 9 pages including 3 ps figures, Accepted for
publication in Phys. Lett.
Nonlocal Co-occurrence for Image Downscaling
Image downscaling is one of the widely used operations in image processing
and computer graphics. It was recently demonstrated in the literature that
kernel-based convolutional filters could be modified to develop efficient image
downscaling algorithms. In this work, we present a new downscaling technique
which is based on kernel-based image filtering concept. We propose to use
pairwise co-occurrence similarity of the pixelpairs as the range kernel
similarity in the filtering operation. The co-occurrence of the pixel-pair is
learned directly from the input image. This co-occurrence learning is performed
in a neighborhood based fashion all over the image. The proposed method can
preserve the high-frequency structures, which were present in the input image,
into the downscaled image. The resulting images retain visually important
details and do not suffer from edge-blurring artifact. We demonstrate the
effectiveness of our proposed approach with extensive experiments on a large
number of images downscaled with various downscaling factors.Comment: 9 pages, 8 figure
- …