10 research outputs found

    The structural history and mineralization controls of the world-class Geita Hill gold deposit, Geita Greenstone Belt, Tanzania

    Get PDF
    The Geita Hill gold deposit is located in the Archean Geita Greenstone Belt and is one of the largest gold deposits in East Africa. The Geita Greenstone Belt experienced a complex deformation and intrusive history that is well illustrated and preserved in and around the Geita Hill gold deposit. Deformation involved early stages of ductile shearing and folding (D1 to D5), during which episodic emplacement of large diorite intrusive complexes, sills, and dykes occurred. These ductile deformation phases were followed by the development of brittle-ductile shear zones and faults (D6 to D8). The last stages of deformation were accompanied by voluminous felsic magmatism involving the intrusion of felsic porphyry dykes, within the greenstone belt, and the emplacement of large granitic bodies now forming the margins of the greenstone belt. Early, folded lamprophyre dykes, and later lamprophyre dykes, crosscutting the folded sequence are common, although volumetrically insignificant. The gold deposit formed late during the tectonic history of the greenstone belt, post-dating ductile deformation and synchronous with the development of brittle-ductile shear zones that overprinted earlier structural elements. The main mineralizing process involved sulfide replacement of magnetite-rich layers in ironstone and locally the replacement of ferromagnesian phases and magnetite in the diorite intrusions. The intersection between the brittle-ductile (D6) Geita Hill Shear Zone and different structural elements of ductile origin (e.g., fold hinges), and the contact between banded ironstone and folded diorite dykes and sills provided the optimal sites for gold mineralization

    Zircon U-Pb ages and Hf isotope data from the Kukuluma Terrain of the Geita Greenstone Belt, Tanzania Craton: Implications for stratigraphy, crustal growth and timing of gold mineralization

    Get PDF
    The Geita Greenstone Belt is a late Archean greenstone belt located in the Tanzania Craton, trending approximately E-Wand can be subdivided into three NW-SE trending terrains: the Kukuluma Terrain to the east, the Central Terrain in the middle and the Nyamullilima Terrain in the west. The Kukuluma Terrain, forms a NW-SE trending zone of complexly deformed sediments, intruded by the Kukuluma Intrusive Complex which, contains an early-syntectonic diorite-monzonite suite and a late-syntectonic granodiorite suite. Three gold deposits (Matandani, Kukuluma and Area 3W) are found along the contact between the Kukuluma Intrusive Complex and the sediments. A crystal tuff layer from the Kukuluma deposits returned an age of 2717 ± 12 Ma which can be used to constrain maximum sedimentation age in the area. Two granodiorite dykes from the same deposit and a small granodiorite intrusion found along a road cut yielded zircon ages of 2667 ± 17 Ma, 2661 ± 16 Ma and 2663 ± 11 Ma respectively. One mineralized granodiorite dyke from the Matandani deposit has an age of 2651 ± 14 Ma which can be used to constrain the maximum age of the gold mineralization in the area. The 2717 Ma crystal tuff has zircon grains with suprachondritic 176Hf/177Hf ratios (0.28108e0.28111 at 2717 Ma) and positive (þ1.6 to þ2.6) εHf values indicating derivation from juvenile mafic crust. Two of the granodiorite samples have suprachondritic 176Hf/177Hf ratios (avg. 0.28106 and 0.28107 at 2663 and 2651 Ma respectively) and nearly chondritic εHf values (avg. -0.5 and -0.3 respectively). The other two granodiorite samples have chondritic 176Hf/177Hf ratios (avg. 0.28104 and 0.28103 at 2667 and 2661 Ma respectively) and slightly negative εHf values (avg. -1.1 and -1.5 respectively). The new zircon age and isotope data suggest that the igneous activity in the Kukuluma Terrain involves a significant juvenile component and occurred within the 2720 to 2620 Ma period which, is the main period of crustal growth in the northern half of the Tanzania Craton

    Decision Agriculture

    Get PDF
    In this chapter, the latest developments in the field of decision agriculture are discussed. The practice of management zones in digital agriculture is described for efficient and smart faming. Accordingly, the methodology for delineating management zones is presented. Modeling of decision support systems is explained along with discussion of the issues and challenges in this area. Moreover, the precision agriculture technology is also considered. Moreover, the chapter surveys the state of the decision agriculture technologies in the countries such as Bulgaria, Denmark, France, Israel, Malaysia, Pakistan, United Kingdom, Ukraine, and Sweden. Finally, different field factors such as GPS accuracy and crop growth are also analyzed

    Alteration paragenesis and the timing of mineralised quartz veins at the world-class Geita Hill gold deposit, Geita Greenstone Belt, Tanzania

    No full text
    The world-class Geita Hill deposit is one of the largest gold deposits located within the Geita Greenstone Belt in NW Tanzania. The deposit is hosted within a complexly deformed sedimentary package dominated by ironstone and intruded by diorite dykes. The gold mineralisation is spatially associated with the Geita Hill Shear Zone which, is a NE-trending, moderately NW dipping deformation zone consisting of a network of discontinuous shear fractures that record early thrusting overprinted by later strike-slip and normal events. The regional metamorphic assemblage in the meta-sediments is characterised by biotite +chlorite + actinolite +K-feldspar + magnetite ± pyrrhotite ± pyrite indicating upper greenschist facies conditions. The gold-related alteration overprints the regional metamorphic assemblage, and is characterised by silicification and sulfidation fronts that generally extend out from the mineralised zone by no more than one meter. The alteration assemblage includes sub-vertical, mineralised quartz veins that trend approximately E-W. The mineralised quartz veins are accompanied by alteration halos of quartz +biotite+ K-feldspar +pyrite which overprints the peak metamorphic assemblage. Gold is closely associated with secondary pyrite and occurs as free gold and gold tellurides (sylvanite, calaverite and nagyagite). It occurs mainly as inclusions in pyrite and as invisible gold in pyrite but also as gold inclusions in biotite and along quartz grain boundaries. Two distinct textural styles of auriferous pyrite can be distinguished: inclusion rich subhedral pyrite, hosting invisible gold, and inclusion free euhedral pyrite, hosting visible gold grains. It is common for the inclusions rich pyrite to have thick rims of inclusion free pyrite. The mineralising alteration is overprinted by barren, multiphase quartz-carbonate, and carbonate-chlorite veins. This alteration is characterised by the assemblage calcite +siderite +chlorite ± quartz ± pyrite ± barite. Palaeostress analysis of mineralised shear fractures along the Geita Hill Shear Zone are indicative of sigma 1 being vertical and sigma 3 trending N-S, indicating N-S extension, which is consistent with the orientation of the mineralised quartz veins

    The geology of the giant Nyankanga gold deposit, Geita Greenstone Belt, Tanzania

    Get PDF
    Nyankanga is the largest gold deposit in the Geita Greenstone Belt of the northern Tanzania Craton. The deposit is hosted within an Archean volcano-sedimentary package dominated by ironstones and intruded by a large diorite complex, the Nyankanga Intrusive Complex. The supracrustal package is now included within the intrusive complex as roof pendants. The ironstone fragments contain evidence of multiple folding events that occurred prior to intrusion. The supracrustal package and Nyankanga Intrusive Complex are cut by a series of NE–SW trending, moderately NW dipping fault zones with a dominant reverse component of movement but showing multiple reactivation events with both oblique and normal movement components. The deposit is cut by a series of NW trending strike slip faults and ~ E–W trending late normal faults. The Nyankanga Fault Zone is a major NW dipping deformation zone developed mainly along the ironstone–diorite contacts that is mineralised over its entire length. The gold mineralization is hosted within the damage zone associated with Nyankanga Fault Zone by both diorite and ironstone with higher grades typically occurring in ironstone. Ore shoots dip more steeply than the Nyankanga Fault Zone. The mineralization is associated with sulfidation fronts and replacement textures in ironstones and is mostly contained as disseminated sulphides in diorite. The close spatial relationship between gold mineralization and the ironstone/diorite contact suggests that the reaction between the mineralising fluid and iron rich lithotypes played an important role in precipitating gold. Intense brecciation and veining, mainly in the footwall of Nyankanga Fault Zone, indicates that the fault zone increased permeability and allowed the access of mineralising fluids. The steeper dip of the ore shoots is consistent with mineralization during normal reactivation of the Nyankanga Fault Zone

    Plutons and domes: the consequences of anatectic magma extraction—example from the southeastern French Massif Central

    No full text
    corecore