56 research outputs found
ARM MOTIONS FOR DIFFERENT TARGET POSITIONS DURING TAEKWONDO ROUNDHOUSE KICKS
The purpose of this study was to investigate arm motions for five different target positions during Taekwondo roundhouse kicks. Nine Taekwondo experts performed roundhouse kicks at a target. A 3D motion analysis was conducted. One-way repeated ANOVA was used to compare the arm motion among five conditions. This study reveals that a higher kick needs the increased vertical separation of the right and left arm (elbow and wrist) in release phase. For a longer kick at Body level, elbows should be more vertically apart and wrists should be more horizontally apart in the release phase. Both attackers and counter attackers in Taekwondo athletes can use the arm swing characteristics at different target heights and distances
Nano-inspired fluidic interactivity for boiling heat transfer: Impact and criteria
The enhancement of boiling heat transfer, the most powerful energy-transferring technology, will lead to milestones in the development of high-efficiency, next-generation energy systems. Perceiving nano-inspired interface functionalities from their rough morphologies, we demonstrate interface-induced liquid refreshing is essential to improve heat transfer by intrinsically avoiding Leidenfrost phenomenon. High liquid accessibility of hemi-wicking and catalytic nucleation, triggered by the morphological and hydrodynamic peculiarities of nano-inspired interfaces, contribute to the critical heat flux (CHF) and the heat transfer coefficient (HTC). Our experiments show CHF is a function of universal hydrodynamic characteristics involving interfacial liquid accessibility and HTC is improved with a higher probability of smaller nuclei with less superheat. Considering the interface-induced and bulk liquid accessibility at boiling, we discuss functionalizing the interactivity between an interface and a counteracting fluid seeking to create a novel interface, a so-called smart interface, for a breakthrough in boiling and its pragmatic application in energy systems
Micro-nano hybrid structures with manipulated wettability using a two-step silicon etching on a large area
Nanoscale surface manipulation technique to control the surface roughness and the wettability is a challenging field for performance enhancement in boiling heat transfer. In this study, micro-nano hybrid structures (MNHS) with hierarchical geometries that lead to maximizing of surface area, roughness, and wettability are developed for the boiling applications. MNHS structures consist of micropillars or microcavities along with nanowires having the length to diameter ratio of about 100:1. MNHS is fabricated by a two-step silicon etching process, which are dry etching for micropattern and electroless silicon wet etching for nanowire synthesis. The fabrication process is readily capable of producing MNHS covering a wafer-scale area. By controlling the removal of polymeric passivation layers deposited during silicon dry etching (Bosch process), we can control the geometries for the hierarchical structure with or without the thin hydrophobic barriers that affect surface wettability. MNHS without sidewalls exhibit superhydrophilic behavior with a contact angle under 10°, whereas those with sidewalls preserved by the passivation layer display more hydrophobic characteristics with a contact angle near 60°
Influence of surgery involving tendons around the knee joint on ankle motion during gait in patients with cerebral palsy
Background
Simultaneous motion of the knee and ankle joints is required for many activities including gait. We aimed to evaluate the influence of surgery involving tendons around the knee on ankle motion during gait in the sagittal plane in cerebral palsy patients.
Methods
We included data from 55 limbs in 34 patients with spastic cerebral palsy. Patients were followed up after undergoing only distal hamstring lengthening with or without additional rectus femoris transfer. The patients mean age at the time of knee surgery was 11.2 ± 4.7 years, and the mean follow-up duration was 2.2 ± 1.5 years (range, 0.9–6.0 years). Pre- and postoperative kinematic variables that were extracted from three-dimensional gait analyses were then compared to assess changes in ankle motion after knee surgery. Outcome measures included ankle dorsiflexion at initial contact, peak ankle dorsiflexion during stance, peak ankle dorsiflexion during swing, and dynamic range of motion of the ankle. Various sagittal plane knee kinematics were also measured and used to predict ankle kinematics. A linear mixed model was constructed to estimate changes in ankle motion after adjusting for multiple factors.
Results
Improvement in total range of motion of the knee resulted in improved motion of the ankle joint. We estimated that after knee surgery, ankle dorsiflexion at initial contact, peak ankle dorsiflexion during stance, peak ankle dorsiflexion during swing, and dynamic range of motion of the ankle decreased, respectively, by 0.4° (p = 0.016), 0.6° (p < 0.001), 0.2° (p = 0.038), and 0.5° (p = 0.006) per degree increase in total range of motion of the knee after either knee surgery. Furthermore, dynamic range of motion of the ankle increased by 0.4° per degree increase in postoperative peak knee flexion during swing.
Conclusions
Improvement in total knee range of motion was found to be correlated with improvement in ankle kinematics after surgery involving tendons around the knee. As motion of the knee and ankle joints is cross-linked, surgeons should be aware of potential changes in the ankle joint after knee surgery.This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2016R1C1B2008557), and was partly supported by the Technology Innovation Program funded By the Ministry of Trade, Industry and Energy (MOTIE) of Korea (10049785) and SNUBH research fund (grant no. 02-2012-018). No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article
The first genome sequence of Anopheles squamous from Macha, Zambia [version 1; peer review: 2 approved]
Despite efforts to minimize the impacts of malaria and reduce the number of primary vectors, malaria has yet to be eliminated in Zambia. Understudied vector species may perpetuate malaria transmission in pre-elimination settings. Anopheles squamosus is one of the most abundantly caught mosquito species in southern Zambia and has previously been found with Plasmodium falciparum sporozoites, a causal agent of human malaria. This species may be a critical vector of malaria transmission, however, there is a lack of genetic information available for An. squamosus. We report the first genome data and the first complete mitogenome (Mt) sequence of An. squamosus. The sequence was extracted from one individual mosquito from the Chidakwa area in Macha, Zambia. The raw reads were obtained using Illumina Novaseq 6000 and assembled through NOVOplasty alignment with related species. The length of the An. squamosus Mt was 15,351 bp, with 77.9 % AT content. The closest match to the whole mitochondrial genome in the phylogenetic tree is the African malaria mosquito, Anopheles gambiae. Its genome data is available through National Center for Biotechnology Information (NCBI) Sequencing Reads Archive (SRA) with accession number SRR22114392. The mitochondrial genome was deposited in NCBI GenBank with the accession number OP776919. The ITS2 containing contig sequence was deposited in GenBank with the accession number OQ241725. Mitogenome annotation and a phylogenetic tree with related Anopheles mosquito species are provided
Moving Through Adolescence: Developmental Trajectories of African American and European American Youth. II: Method
<p>Heat map of TLR4-dependent gene expression changes induced by cotreatment with palmitate and mmLDL (A). J774 cells were stimulated with palmitate for 16h and incubated with or without mmLDL and LPS. Profiles of mRNA were determined by RNA-seq analysis (B-top). To validate RNA-seq results, independent real time PCRs were used to assess the expression of <i>Ccr5</i>, <i>Il-6</i>, <i>Csf-3</i>, <i>Il-1β</i>, and β–actin (B-bottom). The combination of palmitate and mmLDL caused an increase of mRNA expression of <i>Il-6</i>, <i>Csf-3</i>, and <i>Il-1β</i> genes (normalized to that of <i>Actb</i>). The real time PCR was conducted with technical duplicates, and the data shown represent three independent replicate experiments. *p <0.05 and **p <0.01 compared to LPS treatment without palmitate or mmLDL.</p
Isoform specific gene expression analysis of KRAS in the prognosis of lung adenocarcinoma patients
Abstract Background Aberrant mutations in KRAS play a critical role in tumor initiation and progression, and are a negative prognosis factor in lung adenocarcinoma (LUAD). Results Using genomic analysis for K-Ras isoforms (K-Ras4A and K-Ras4B) and large-scale multi-omics data, we inspected the overall survival (OS) and disease-free survival (DFS) of LUAD patients based on the abundance of transcript variants by analyzing RNA expression and somatic mutation data from The Cancer Genome Atlas (n = 516). The expression of the minor transcript K-Ras4A and its proportion were positively correlated with the presence of KRAS mutations in LUAD. We found that both K-Ras4A abundance measures (expression and proportion) have a strong association with poor OS (p = 0.0149 and p = 3.18E-3, respectively) and DFS (p = 3.03E-4 and p = 0.0237, respectively), but only in patients harboring KRAS mutations. A Cox regression analysis showed significant results in groups with low expression (hazard ratio (HR) = 2.533, 95% confidence interval (CI) = 1.380−4.651, p = 2.72E-3) and low proportion (HR = 2.549, 95% CI = 1.387−4.684, p = 2.58E-3) of K-Ras4A. Conclusions Based on the above results, we report the possible use of abundance measures for K-Ras4A for predicting the survival of LUAD patients with KRAS mutations
Analysis of Whole Transcriptome Sequencing Data: Workflow and Software
RNA is a polymeric molecule implicated in various biological processes, such as the coding, decoding, regulation, and expression of genes. Numerous studies have examined RNA features using whole transcriptome sequencing (RNA-seq) approaches. RNA-seq is a powerful technique for characterizing and quantifying the transcriptome and accelerates the development of bioinformatics software. In this review, we introduce routine RNA-seq workflow together with related software, focusing particularly on transcriptome reconstruction and expression quantification
- …