27 research outputs found

    Observing How Glutathione and S-Hexyl Glutathione Bind to Glutathione S-Transferase from Rhipicephalus (Boophilus) microplus

    No full text
    Rhipicephalus (Boophilus) microplus is one of the most widespread ticks causing a massive loss to livestock production. The long-term use of acaracides rapidly develops acaracide resistance. In R. microplus, enhancing the metabolic activity of glutathione S-transferase (RmGST) is one of the mechanisms underlying acaracide resistance. RmGST catalyzes the conjugation of glutathione (GSH) to insecticides causing an easy-to-excrete conjugate. The active RmGST dimer contains two active sites (hydrophobic co-substrate binding site (H-site) and GSH binding site (G-site)) in each monomer. To preserve the insecticide efficacy, s-hexyl glutathione (GTX), a GST inhibitor, has been used as a synergist. To date, no molecular information on the RmGST-GSH/GTX complex is available. The insight is important for developing a novel RmGST inhibitor. Therefore, in this work, molecular dynamics simulations (MD) were performed to explore the binding of GTX and GSH to RmGST. GSH binds tighter and sits rigidly inside the G-site, while flexible GTX occupies both active sites. In GSH, the backbone mainly interacts with W8, R43, W46, K50, N59, L60, Q72, and S73, while its thiol group directs to Y7. In contrast, the aliphatic hexyl of GTX protrudes into the H-site and allows a flexible peptide core to form various interactions. Such high GTX flexibility and the protrusion of its hexyl moiety to the H-site suggest the dual role of GTX in preventing the conjugation reaction and the binding of acaracide. This insight can provide a better understanding of an important insecticide-resistance mechanism, which may in turn facilitate the development of novel approaches to tick control

    Urban and rural variation in clustering of metabolic syndrome components in the Thai population: results from the fourth National Health Examination Survey 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information on the distribution of Metabolic syndrome (MetS) and its combinations by urban/rural areas in lower-middle income countries has been limited. It is not clear how the various combinations of MetS components varied by urban/rural population and if particular combinations of MetS are more common. This study aimed to estimate the prevalence of MetS and combinations of MetS components according to sex and urban/rural areas from a nationally representative sample of Thai adults.</p> <p>Methods</p> <p>Data from the fourth National Health Examination Survey of 19,256 Thai adults aged 20 years and over were analyzed. MetS was defined using the harmonized criteria of six international expert groups with Asian-specific cut-point for waist circumference.</p> <p>Results</p> <p>The prevalence of MetS was 23.2% among adults aged ≥ 20 years (19.5% in men and 26.8% in women). Among men, the prevalence of MetS in urban was higher than those in rural areas (23.1% vs 17.9%, <it>P </it>< 0.05), but among women, the prevalence was higher in rural areas (27.9% vs 24.5%, <it>P </it>< 0.05). Overall, an individual component of low high density lipoprotein (HDL) and hypertriglyceridemia were more common in rural areas, while obesity, high blood pressure and hyperglycemia were more common in urban areas. The most common combination of MetS components in men was the clustering of low HDL, hypertriglyceridemia, and high blood pressure (urban: 3.4% vs. rural: 3.9%, adjusted OR 0.9, 95%CI 0.7, 1.1). Among women, the most common combination was the clustering of obesity, low HDL, and hypertriglyceridemia (urban: 3.9% vs rural: 5.9%, adjusted OR 0.8, 95%CI 0.6, 0.9), followed by the clustering of these three components with high blood pressure (urban: 3.1% vs. rural 4.5%, adjusted OR 0.8, 95%CI 0.7, 0.9).</p> <p>Conclusion</p> <p>Metabolic syndrome affects both urban and rural population with different pattern of MetS combinations. Dyslipidemia and obesity were the most common components among women in rural areas, hence, interventions to prevent and control these factors should be strengthened.</p

    Multi-scale hybrid eco-nanocomposites: synthesis and characterization of nano-SiC-reinforced vinyl-ester eco-composites

    No full text
    Polymer eco-nanocomposites based on vinyl-ester, recycled cellulose fibre and nano-silicon carbide (n-SiC) have been synthesized and characterized in terms of porosity, water-absorption behaviour, thermal and mechanical properties. The addition of n-SiC led to reduced porosity and water uptake because of enhanced fibre–matrix adhesion which permitted efficient load transfer and thus strength improvement. However, n-SiC addition reduced the prevalence of fibre debonding and pull-outs, thus causing sample brittleness and inferior fracture toughness. In terms of thermal properties, n-SiC addition facilitated improved mass transport and heat barriers, thus improving thermal stability and fire resistance
    corecore