3 research outputs found

    Surface Hopping Dynamics with the Frenkel Exciton Model in a Semiempirical Framework

    Get PDF
    We present an implementation of the Frenkel exciton model in the framework of the semiempirical floating occupation molecular orbitals-configuration interaction (FOMO-CI) electronic structure method, aimed at simulating the dynamics of multichromophoric systems, in which excitation energy transfer can occur, by a very efficient approach. The nonadiabatic molecular dynamics is here dealt with by the surface hopping method, but the implementation we proposed is compatible with other dynamical approaches. The exciton coupling is computed either exactly, within the semiempirical approximation considered, or by resorting to transition atomic charges. The validation of our implementation is carried out on the trans-azobenzeno-2S-phane (2S-TTABP), formed by two azobenzene units held together by sulfur bridges, taken as a minimal model of multichromophoric systems, in which both strong and weak exciton couplings are present

    On the Nature of Geometric and Topological Phases in the Presence of Conical Intersections

    Get PDF
    The observable nature of topological phases related to conical intersections in molecules is studied. Topological phases should be ubiquitous in molecular processes, but their elusive character has often made them a topic of discussion. To shed some light on this issue, we simulate the dynamics governed by a Jahn鈥揟eller Hamiltonian and analyze it employing two theoretical representations of the molecular wave function: the adiabatic and the exact factorization. We find fundamental differences between effects related to topological phases arising exclusively in the adiabatic representation, and thus not related to any physical observable, and geometric phases within the exact factorization that can be connected to an observable quantity. We stress that while the topological phase of the adiabatic representation is an intrinsic property of the Hamiltonian, the geometric phase of the exact factorization depends on the dynamics that the system undergoes and is connected to the circulation of the nuclear momentum field
    corecore