12 research outputs found

    Rapid amplification and cloning of TN5 flanking fragments by inverse PCR

    No full text
    A Simple approach is described to efficiently amplify DNA sequences flanking transposon Tn5 insertions. The method involves: (i) digestion with a restriction enzyme that cuts within Tn5; (ii) self-ligation under conditions favouring the production of monomeric circles; (iii) four parallel PCR reactions using primers designed to amplify left or right flanking sequences, and to distinguish target amplicons from non-specific products. This reveals the number of Tn5 insertions and the size of flanking genomic restriction fragments, without Southern blot analysis. The amplified product contains restriction sites that facilitate cohesive-end cloning. This rapid method is demonstrated using Tn5 and Tn5-Mob tagged DNA sequences involved in albicidin biosynthesis in Xanthomonas albilineans. It is generally applicable for efficient recovery of DNA sequences flanking transposon Tn5 derivatives in insertional mutagenesis studies

    Immunogenetics: changing the face of immunodeficiency

    No full text
    Tables 1 and 2 highlight the enormous advances that have been made in the definition of the molecular defects underlying primary immunodeficiencies in the past decade. The identification of SAP as the gene defective in XLP now completes the molecular bases of all the recognised X linked syndromes. Of the autosomally inherited syndromes, only the genes for DiGeorge syndrome, hyper-IgE, and perhaps most improtantly, common variable immunodeficiency remain to be elucidated. The major clinical benefits of this information have primarily been in offering more accurate and rapid molecular diagnoses. The ability to make a molecular diagnosis also increases the options for earlier definitive treatments such as bone marrow transplantation and somatic gene therapy. Finally, as illustrated by the studies on the functions of WASP and the Îłc/JAK-3 pathway, identification of the gene defect is the first step to understanding the molecular pathogenesis of the immunological abnormalities
    corecore