38 research outputs found

    Atorvastatin Therapy during the Peri-Infarct Period Attenuates Left Ventricular Dysfunction and Remodeling after Myocardial Infarction

    Get PDF
    Although statins impart a number of cardiovascular benefits, whether statin therapy during the peri-infarct period improves subsequent myocardial structure and function remains unclear. Thus, we evaluated the effects of atorvastatin on cardiac function, remodeling, fibrosis, and apoptosis after myocardial infarction (MI). Two groups of rats were subjected to permanent coronary occlusion. Group II (n = 14) received oral atorvastatin (10 mg/kg/d) daily for 3 wk before and 4 wk after MI, while group I (n = 12) received equivalent doses of vehicle. Infarct size (Masson's trichrome-stained sections) was similar in both groups. Compared with group I, echocardiographic left ventricular ejection fraction (LVEF) and fractional area change (FAC) were higher while LV end-diastolic volume (LVEDV) and LV end-systolic and end-diastolic diameters (LVESD and LVEDD) were lower in treated rats. Hemodynamically, atorvastatin-treated rats exhibited significantly higher dP/dtmax, end-systolic elastance (Ees), and preload recruitable stroke work (PRSW) and lower LV end-diastolic pressure (LVEDP). Morphometrically, infarct wall thickness was greater in treated rats. The improvement of LV function by atorvastatin was associated with a decrease in hydroxyproline content and in the number of apoptotic cardiomyocyte nuclei. We conclude that atorvastatin therapy during the peri-infarct period significantly improves LV function and limits adverse LV remodeling following MI independent of a reduction in infarct size. These salubrious effects may be due in part to a decrease in myocardial fibrosis and apoptosis

    Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study

    Get PDF
    Heart failure following acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Our previous observation that injection of apoptotic peripheral blood mononuclear cell (PBMC) suspensions was able to restore long-term cardiac function in a rat AMI model prompted us to study the effect of soluble factors derived from apoptotic PBMC on ventricular remodelling after AMI. Cell culture supernatants derived from irradiated apoptotic peripheral blood mononuclear cells (APOSEC) were collected and injected as a single dose intravenously after myocardial infarction in an experimental AMI rat model and in a porcine closed chest reperfused AMI model. Magnetic resonance imaging (MRI) and echocardiography were used to quantitate cardiac function. Analysis of soluble factors present in APOSEC was performed by enzyme-linked immunosorbent assay (ELISA) and activation of signalling cascades in human cardiomyocytes by APOSEC in vitro was studied by immunoblot analysis. Intravenous administration of a single dose of APOSEC resulted in a reduction of scar tissue formation in both AMI models. In the porcine reperfused AMI model, APOSEC led to higher values of ejection fraction (57.0 vs. 40.5%, p < 0.01), a better cardiac output (4.0 vs. 2.4 l/min, p < 0.001) and a reduced extent of infarction size (12.6 vs. 6.9%, p < 0.02) as determined by MRI. Exposure of primary human cardiac myocytes with APOSEC in vitro triggered the activation of pro-survival signalling-cascades (AKT, Erk1/2, CREB, c-Jun), increased anti-apoptotic gene products (Bcl-2, BAG1) and protected them from starvation-induced cell death. Intravenous infusion of culture supernatant of apoptotic PBMC attenuates myocardial remodelling in experimental AMI models. This effect is probably due to the activation of pro-survival signalling cascades in the affected cardiomyocytes

    Cardiac Repair with Adult Bone Marrow-Derived Cells: The Clinical Evidence

    No full text
    On the basis of strong evidence from animal studies, numerous clinical trials of cardiac repair with adult bone marrow-derived cells (BMC) have been completed. These relatively smaller studies employed different BMC types with highly variable numbers, routes, and timings of transplantation, and included patients with acute myocardial infarction (MI), chronic ischemic heart disease (IHD), as well as ischemic cardiomyopathy. Although the outcomes have been predictably disparate, analysis of pooled data indicates that BMC therapy in patients with acute MI and chronic IHD results in modest improvements in left ventricular function and infarct scar size without any increase in untoward effects. However, the precise mechanisms underlying these benefits remain to be ascertained, and the specific advantages of one BMC type over another remain to be determined. The long-term benefit and safety issues with different BMC types are currently being evaluated critically in larger randomized controlled trials with a view to applying this novel therapeutic strategy to broader patient populations. The purpose of this review is to summarize the available clinical evidence regarding the efficacy and safety of therapeutic cardiac repair with different types of adult BMCs, and to discuss the key variables that need optimization to further enhance the benefits of BMC therapy. Antioxid. Redox Signal. 11, 1865–1882

    Impact of Age on the Efficacy and Safety of Alirocumab in Patients with Heterozygous Familial Hypercholesterolemia

    No full text
    Purpose: This post-hoc analysis examined whether age modified the efficacy and safety of alirocumab, a PCSK9 inhibitor, in patients with heterozygous familial hypercholesterolemia (HeFH), using pooled data from four 78-week placebo-controlled phase 3 trials (ODYSSEY FH I, FH II, LONG TERM, and HIGH FH). Methods: Data from 1257 patients with HeFH on maximally tolerated statin ± other lipid-lowering therapies were analyzed by an alirocumab dose regimen and by age subgroups (18 to < 45, 45 to < 55, 55 to < 65, and ≥ 65 years). In the FH I and II trials, patients received 75 mg subcutaneously every 2 weeks (Q2W), with dose increase to 150 mg Q2W at week 12 if week 8 low-density lipoprotein cholesterol (LDL-C) was ≥ 70 mg/dl. In HIGH FH and LONG TERM, patients received 150 mg alirocumab Q2W. Results: Baseline characteristics were similar between treatment groups across all age groups; the proportion of males decreased whereas the proportion of patients with coronary heart disease, diabetes, hypertension, and declining renal function increased with increasing age. Mean LDL-C reductions at week 24 were consistent across age groups (50.6–61.0% and 51.1–65.8% vs. placebo for the 75/150 and 150 mg alirocumab dose regimens, respectively; both non-significant interaction P-values). Treatment-emergent adverse events occurred in similar frequency in alirocumab- and placebo-treated patients regardless of age, except for injection-site reactions, which were more common in alirocumab than placebo but declined in frequency with age. Conclusions: Alirocumab treatment resulted in significant LDL-C reductions at weeks 12 and 24 and was generally well tolerated in patients with HeFH across all age groups studied
    corecore