1,997 research outputs found
FE Modeling Methodology for Load Analysis and Preliminary Sizing of Aircraft Wing Structure
It is a critical part at the basic design phase of aircraft structural design to build a finite element model and it will have a direct impact on time and cost for airframe structure development. In addition, the objective of finite element model will be varied depending on each design review phase and the modelling methodology varied accordingly. In order to build an effective and economic finite element model, it is required to develop adequate level of modelling methodology based on each design phase and its objectives. Therefore, in this paper, the finite element modeling methodology was presented for internal load analysis of wing structure of multi-spar type military aircraft, load path evaluation and initial sizing of wing structure. All structures reflected mechanical function and at the same time, idealized to achieve easy and conservative result of internal load evaluation. Through analysis of various loads, it was confirmed that the finite element modeling suggested in this paper and initial sizing method could be applied to internal load analysis of wing structure and initial sizing
Development of a piezoelectric multi-axis stage based on stick-and-clamping actuation technology
This paper presents the design, analysis and fabrication of a piezoelectric multi-axis stage based on a new stick-and-clamping actuation technology for miniaturized machine tool systems, referred to as meso-scale machine tool (mMT) systems. In the stick-and-clamping actuation system, shearing/expanding piezoelectric actuators, an inertial mass and an advanced preload system are configured innovatively to generate the motion of an inertial mass. There are two operating modes in the stick-and-clamping actuation technology: (1) stick mode and (2) clamp mode. In stick mode, the ‘slow’ deformation of the shearing piezoelectric actuators drives an inertial mass, which is located on the tips of the shearing piezoelectric actuators, by means of the friction force at their contact interface. On the other hand, in clamp mode, the expanding piezoelectric actuators provide the clamping force to an inertial mass when the rapid backward deformation of the shearing piezoelectric actuators occurs. The stick-and-clamping actuation technology also enables two-degrees-of-freedom (DOF) motion of an inertial mass in a single plane by perpendicularly stacking two shearing piezoelectric actuators. The 2-DOF piezoelectric multi-axis stage is developed on the basis of the stick-and-clamping actuation technology, and the dynamic and static performance analyses are conducted. The LuGre friction model for the contact interfaces is introduced, and their dynamic behaviours are characterized. In the open-loop static performance test, linear, diagonal and circular motions of the developed piezoelectric multi-axis stage are generated, and their performances are evaluated. The dynamic characteristics and static performances of the developed 2-DOF piezoelectric multi-axis stage show its applicability and effectiveness for the precision positioning system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58149/2/sms7_6_040.pd
Proto-type installation of a double-station system for the optical-video-detection and orbital characterisation of a meteor/fireball in South Korea
We give a detailed description of the installation and operation of a
double-station meteor detection system which formed part of a research &
education project between Korea Astronomy Space Science Institute and Daejeon
Science Highschool. A total of six light-sensitive CCD cameras were installed
with three cameras at SOAO and three cameras at BOAO observatory. A
double-station observation of a meteor event enables the determination of the
three-dimensional orbit in space. This project was initiated in response to the
Jinju fireball event in March 2014. The cameras were installed in
October/November 2014. The two stations are identical in hardware as well as
software. Each station employes sensitive Watec-902H2 cameras in combination
with relatively fast f/1.2 lenses. Various fields of views were used for
measuring differences in detection rates of meteor events. We employed the
SonotaCo UFO software suite for meteor detection and their subsequent analysis.
The system setup as well as installation/operation experience is described and
first results are presented. We also give a brief overview of historic as well
as recent meteor (fall) detections in South Korea. For more information please
consult http://meteor.kasi.re.kr .Comment: Technical/instrumentation description of a professional meteor
detection system, 23 pages, 20 figures (color/monochrome), 5 tables,
submitted to the Journal of Korean Astronomical Society (JKAS,
http://jkas.kas.org/, http://jkas.kas.org/history.html
SOLiDzipper: A High Speed Encoding Method for the Next-Generation Sequencing Data
Background Next-generation sequencing (NGS) methods pose computational challenges of handling large volumes of data. Although cloud computing offers a potential solution to these challenges, transferring a large data set across the internet is the biggest obstacle, which may be overcome by efficient encoding methods. When encoding is used to facilitate data transfer to the cloud, the time factor is equally as important as the encoding efficiency. Moreover, to take advantage of parallel processing in cloud computing, a parallel technique to decode and split compressed data in the cloud is essential. Hence in this review, we present SOLiDzipper, a new encoding method for NGS data. Methods The basic strategy of SOLiDzipper is to divide and encode. NGS data files contain both the sequence and non-sequence information whose encoding efficiencies are different. In SOLiDzipper, encoded data are stored in binary data block that does not contain the characteristic information of a specific sequence platform, which means that data can be decoded according to a desired platform even in cases of Illumina, Solexa or Roche 454 data. Results The main calculation time using Crossbow was 173 minutes when 40 EC2 nodes were involved. In that case, an analysis preparation time of 464 minutes is required to encode data in the latest DNA compression method like G-SQZ and transmit it on a 183 Mbit/s bandwidth. However, it takes 194 minutes to encode and transmit data with SOLiDzipper under the same bandwidth conditions. These results indicate that the entire processing time can be reduced according to the encoding methods used, under the same network bandwidth conditions. Considering the limited network bandwidth, high-speed, high-efficiency encoding methods such as SOLiDzipper can make a significant contribution to higher productivity in labs seeking to take advantage of the cloud as an alternative to local computing. Availability http://szipper.dinfree.com . Academic/non-profit: Binary available for direct download at no cost. For-profit: Submit request for for-profit license from the web-site
Structural performance experiment by moving cart to mount measurement sensors
The development of a measurement system for the purpose of structural performance evaluation has been needed. This work introduces a moving cart system on which to mount measurement sensors to measure acceleration and sound pressure in the time domain and an impact hammer for external excitation. The measurement data are utilized to evaluate the structural performance based on a mixed approach to directly and indirectly collect response data by a microphone and an accelerometer, respectively. The reliability of the measurement data is improved by the utilization of multiple sensors. The structural state is investigated by the power spectral density estimate (PSE) or proper orthogonal mode (POM) of the sound pressure and acceleration data. The applicability of the system is illustrated in a field test
The potent protective effect of wild ginseng (Panax ginseng C.A. Meyer) against benzo[alpha]pyrene-induced toxicity through metabolic regulation of CYP1A1 and GSTs
Wild Panax ginseng C.A. Meyer (WG) is a well-known medicinal herb. In this study, the protective effects of a water extract from the root of WG on benzo[alpha]pyrene (BP)-induced hepatotoxicity and the mechanism of these effects were investigated for the first time. The effects of WG on liver toxicities induced by BP were assessed by blood biochemical and histopathological analyses. BP caused severe liver injury in rats, as indicated by elevated plasma ALT, AST and LPO levels. Pretreatment with WG for 4 weeks completely abrogated increases in the ALT, AST and LPO levels when challenged with BP. Reductions in GSH content and GST activity by BP were reversed by WG. These protective effects of WG against BP-induced toxicity were consistent with the results of histopathological examinations. We next examined the effects of WG on the gene expression of the enzymes that metabolize BP in H4IIE cells. CYP1A1 mRNA and protein expression were increased by BP. WG moderately inhibited BP-induced CYP1A1 gene expression. Moreover, GSTA2, GSTA3 and GSTM2 gene expressions were significantly increased by WG through the Nrf2/antioxidant responsive element pathway for enzyme induction. In summary, WG is efficacious in protecting against BP-induced hepatotoxicity as results of metabolic regulations through both the inhibition of metabolic enzyme activation and the enhancement of electrophilic detoxification, implying that WG should be considered a potential chemopreventive agent
Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus.
BackgroundDiabetic cardiomyopathy (DM CMP) is defined as cardiomyocyte damage and ventricular dysfunction directly associated with diabetes independent of concomitant coronary artery disease or hypertension. Matrix metalloproteinases (MMPs), especially MMP-2, have been reported to underlie the pathogenesis of DM CMP by increasing extracellular collagen content.PurposeWe hypothesized that two discrete MMP-2 isoforms (full length MMP-2, FL-MMP-2; N-terminal truncated MMP-2, NTT-MMP-2) are induced by high glucose stimulation in vitro and in an experimental diabetic heart model.MethodsRat cardiomyoblasts (H9C2 cells) were examined to determine whether high glucose can induce the expression of the two isoforms of MMP-2. For the in vivo study, we used the streptozotocin-induced DM mouse heart model and age-matched controls. The changes of each MMP-2 isoform expression in the diabetic mice hearts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical stains were conducted to identify the location and patterns of MMP-2 isoform expression. Echocardiography was performed to compare and analyze the changes in cardiac function induced by diabetes.ResultsQuantitative RT-PCR and immunofluorescence staining showed that the two MMP-2 isoforms were strongly induced by high glucose stimulation in H9C2 cells. Although no definite histologic features of diabetic cardiomyopathy were observed in diabetic mice hearts, left ventricular systolic dysfunction was determined by echocardiography. Quantitative RT-PCR and IHC staining showed this abnormal cardiac function was accompanied with the increases in the mRNA levels of the two isoforms of MMP-2 and related to intracellular localization.ConclusionTwo isoforms of MMP-2 were induced by high glucose stimulation in vitro and in a Type 1 DM mouse heart model. Further study is required to examine the role of these isoforms in DM CMP
Validation of a Novel Endoscopic Feature that Predicts Helicobacter pylori-negative Status: Does the Scratch Sign Reflect H. pylori Non-infection?
Background/Aims Identification of Helicobacter pylori infection status is necessary as H. pylori is associated with gastric malignancy. Recently, a red linear scrape-like appearance on the gastric mucosa, called the “scratch sign,” was reported to be associated with H. pylori-negative gastric mucosal status. Herein, we aimed to validate the association between the scratch sign and H. pylori infection status. Methods The data of patients who underwent screening endoscopy at Bundang Jesaeng General Hospital between March 2023 and April 2023 were reviewed. Patients were classified as having an H. pylori current infection or non-infection status based on the results of rapid urease tests. Patients who had undergone H. pylori eradication therapy were excluded. Endoscopic features of the gastric mucosa were assessed using the Kyoto classification of gastritis. Results The scratch sign appeared more frequently in patients with non-infection than in those with current infection status (32.7% vs. 10.6%, respectively; P<0.001). Multivariate analysis showed that only the presence of sticky mucus was significantly associated with the presence of the scratch sign. Patient without the scratch sign had a higher prevalence of open-type atrophy, intestinal metaplasia, enlarged folds, and diffuse redness, which reflected a higher Kyoto score. Conclusions Presence of the gastric mucosal scratch sign, a novel endoscopic marker, is indicative of H. pylori-negative status and appears to be inversely correlated with the presence of sticky mucus. In addition to the Kyoto classification of gastritis, detection of the scratch sign may facilitate identification of the H. pylori infection status
- …