7,157 research outputs found

    Optimal Stratification and Allocation for the June Agricultural Survey

    Get PDF
    A computational approach to optimal multivariate designs with respect to stratification and allocation is investigated under the assumptions of fixed total allocation, known number of strata, and the availability of administrative data correlated with thevariables of interest under coefficient-of-variation constraints. This approach uses a penalized objective function that is optimized by simulated annealing through exchanging sampling units and sample allocations among strata. Computational speed is improved through the use of a computationally efficient machine learning method such as K-means to create an initial stratification close to the optimal stratification. The numeric stability of the algorithm has been investigated and parallel processing has been employed where appropriate. Results are presented for both simulated data and USDA’s June Agricultural Survey. An R package has also been made available for evaluation

    A hand shape recognizer from simple sketches

    Get PDF
    Hand shape recognition is one of the most important techniques used in human-computer interaction. However, it often takes developers great efforts to customize their hand shape recognizers. In this paper, we present a novel method that enables a hand shape recognizer to be built automatically from simple sketches, such as a 'stick-figure' of a hand shape. We introduce the Hand Boltzmann Machine (HBM), a generative model built upon unsupervised learning, to represent the hand shape space of a binary image, and formulate the user provided sketches as an initial guidance for sampling to generate realistic hand shape samples. Such samples are then used to train a hand shape recognizer. We evaluate our method and compare it with other state-of-the-art models in three aspects, namely i) its capability of handling different sketch input, ii) its classification accuracy, and iii) its ability to handle occlusions. Experimental results demonstrate the great potential of our method in real world applications. © 2013 IEEE.published_or_final_versio

    Analysis of heat transfer and thermal environment in a rural residential building for addressing energy poverty

    Get PDF
    Reducing energy consumption and creating a comfortable thermal indoor environment in rural residential buildings can play a key role in fighting global warming in China. As a result of economic development, rural residents are building new houses and modernizing existing buildings. This paper investigated and analyzed a typical rural residential building in the Ningxia Hui Autonomous Region in Northwest China through field measurements and numerical simulation. The results showed that making full use of solar energy resources is an important way to improve the indoor temperature. Reasonable building layout and good thermal performance of the building envelope can reduce wind velocities and convective heat loss. Insulation materials and double-glazed windows should be used to reduce energy loss in new buildings, although it is an evolution process in creating thermally efficient buildings in rural China. This research provides a reference for the design and construction of rural residential buildings in Northwest China and similar areas for addressing energy poverty

    Group V Phospholipase A2 Induces Leukotriene Biosynthesis in Human Neutrophils through the Activation of Group IVA Phospholipase A2

    Get PDF
    We reported previously that exogenously added human group V phospholipase A2 (hVPLA2) could elicit leukotriene B4 (LTB4) biosynthesis in human neutrophils (Han, S. K., Kim, K. P., Koduri, R., Bittova, L., Munoz, N. M., Leff, A. R., Wilton, D. C., Gelb, M. H., and Cho, W. (1999) J. Biol. Chem. 274, 11881-11888). To determine the mechanism of the hVPLA2-induced LTB4 biosynthesis in neutrophils, we thoroughly examined the effects of hVPLA2 and their lipid products on the activity of group IVA cytosolic PLA2 (cPLA2) and LTB4 biosynthesis under different conditions. As low as 1 nM exogenous hVPLA2 was able to induce the release of arachidonic acid (AA) and LTB4. Typically, AA and LTB4 were released in two phases, which were synchronized with a rise in intracellular calcium concentration ([Ca2+]i) near the perinuclear region and cPLA2 phosphorylation. A cellular PLA2 assay showed that hVPLA2 acted primarily on the outer plasma membrane, liberating fatty acids and lysophosphatidylcholine (lyso-PC), whereas cPLA2 acted on the perinuclear membrane. Lyso-PC and polyunsaturated fatty acids including AA activated cPLA2 and 5-lipoxygenase by increasing [Ca2+]i and inducing cPLA2 phosphorylation, which then led to LTB4 biosynthesis. The delayed phase was triggered by the binding of secreted LTB4 to the cell surface LTB4 receptor, which resulted in a rise in [Ca2+]i and cPLA2 phosphorylation through the activation of mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2. These results indicate that a main role of exogenous hVPLA2 in neutrophil activation and LTB4 biosynthesis is to activate cPLA2 and 5-lipoxygenase primarily by liberating from the outer plasma membrane lyso-PC that induces [Ca2+]i increase and cPLA2 phosphorylation and that hVPLA2-induced LTB4 production is augmented by the positive feedback activation of cPLA2 by LTB4

    Collinear Factorization for Single Transverse-Spin Asymmetry in Drell-Yan Processes

    Full text link
    We study the scattering of a single parton state with a multi-parton state to derive the complete results of perturbative coefficient functions at leading order, which appear in the collinear factorization for Single transverse-Spin Asymmetry(SSA) in Drell-Yan processes with a transversely polarized hadron in the initial state. We find that the factorization formula of SSA contains hard-pole-, soft-quark-pole- and soft-gluon-pole contributions. It is interesting to note that the leading order perturbative coefficient functions of soft-quark-pole- and soft-gluon-pole contributions are extracted from parton scattering amplitudes at one-loop, while the functions of hard-pole contributions are extracted from the tree level amplitudes at tree-level. Our method to derive the factorization of SSA is different than the existing one in literature. A comparison of our results with those obtained by other method is made.Comment: 27 pages, 14 figures, text improved, to appear in Phys. Rev.

    A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm

    Get PDF
    This paper develops a particle swarm optimisation (PSO) based framework for multi-objective optimisation (MOO). As a part of development, a new PSO method, named self-adaptive PSO (SAPSO), is first proposed. Since the convergence of SAPSO determines the quality of the obtained Pareto front, this paper analytically investigates the convergence of SAPSO and provides a parameter selection principle that guarantees the convergence. Leveraging the proposed SAPSO, this paper then designs a SAPSO-based MOO framework, named SAMOPSO. To gain a well-distributed Pareto front, we also design an external repository that keeps the non-dominated solutions. Next, a circular sorting method, which is integrated with the elitist-preserving approach, is designed to update the external repository in the developed MOO framework. The performance of the SAMOPSO framework is validated through 12 benchmark test functions and a real-word MOO problem. For rigorous validation, the performance of the proposed framework is compared with those of four well-known MOO algorithms. The simulation results confirm that the proposed SAMOPSO outperforms its contenders with respect to the quality of the Pareto front over the majority of the studied cases. The non-parametric comparison results reveal that the proposed method is significantly better than the four algorithms compared at the confidence level of 90% over the 12 test functions

    Core-shell poly(lactide-co-ε-caprolactone)-gelatin fiber scaffolds as pH-sensitive drug delivery systems

    Get PDF
    Dual-drug-loaded pH-responsive fiber scaffolds were successfully prepared by coaxial electrospinning. These were designed with the aim of being sutured into the resection site after tumor removal, to aid recovery and prevent cancer recurrence. The shell was made up of a mixture of gelatin and sodium bicarbonate (added to provide pH-sensitivity), and was loaded with the anti-inflammatory drug ciprofloxacin; the core comprised poly(lactide-co-ε-caprolactone) with the chemotherapeutic doxorubicin hydrochloride. Scanning electron microscopy revealed most fibers were smooth and homogeneous. Transmission electron microscopy demonstrated the presence of a clear core/shell structure. The fiber scaffolds were further characterized using infrared spectroscopy and X-ray diffraction, which proved that both drugs were present in the fibers in the amorphous form. The gelatin shells were cross-linked with glutaraldehyde to enhance their stability, and water contact angle measurements used to confirm they remained hydrophilic after this process, with angles between 10 and 35°. This is important for onward applications, since a hydrophilic surface is known to encourage cell proliferation. During in vitro drug release studies, a rapid and acid-responsive release of ciprofloxacin was seen, accompanied by sustained and long-term doxorubicin release. Both the release profiles and the mechanical strength of the fibers can effectively be tuned through the sodium bicarbonate content of the fibers: for instance, the break stress varies from 2.00 MPa to 2.57 MPa with an increase in sodium bicarbonate content. The pH values of aqueous media exposed to the scaffolds decrease only slightly, by less than 0.5 pH units, over the two-month timescale, suggesting that only minimal fiber degradation occurs during this time. The fiber scaffolds also have good biocompatibility, as revealed by in vitro cytotoxicity experiments. Overall, our results demonstrate that the novel scaffolds reported here are promising pH-sensitive drug delivery systems, and may be candidates for use after tumor resection surgery

    Global Engineering Competency in Context: Situations and Behaviors

    Get PDF
    Engineering graduates encounter worlds of professional practice that are increasingly global in character. This new reality poses challenges for engineering educators and employers, who are faced with the formidable task of preparing engineers to be more effective in diverse national and cultural contexts. In response, many commentators have proposed lists of attributes or competencies deemed important or even essential for global engineering work. However, such lists have tended to lack explicit grounding in empirical studies of engineering practice, including typical kinds of work situations and related behavioral requirements. As a step toward establishing a more robust definition and developmental theory of global engineering competency, this paper reports results from a wide-ranging literature review on engineering practice in global context. The findings are organized around three main contextual dimensions of global engineering competency: technical coordination; engineering cultures; and ethics, standards, and regulations. Particular efforts are made to relate our findings to prior discussions of what it means to be a globally competent engineer, while further illustrating each dimension by giving examples drawn from interviews with practicing engineers. The paper concludes with a review of ongoing and future work, including how our findings are inspiring creation of situational prompts and activities for both assessment and instructional uses
    • …
    corecore