7 research outputs found
DEM STUDY ON THE PENETRATION OF JACKED PILES INTO LAYERED SOFT CLAY
In order to explore the variation law of soil particle displacement and pile force around piles during penetration process, the DEM (Discrete Element Method) model is used to test the penetration of pile foundation in layered soft soil foundation. The variation law of pile penetration force, radial pressure at pile-soil interface, friction resistance at pile side, displacement field and force field between particles during penetration process is analyzed. Research shows: (1) The penetration force increases with the increase of penetration depth and pile diameter. The increase of pile diameter is beneficial to overcome the influence of unfavorable strata. (2) At the same penetration depth, with the continuous penetration of the pile body, the radial pressure gradually decreases, showing a significant degradation phenomenon. The reason for the degradation of lateral friction is essentially the degradation of the radial pressure. (3) The distribution of contact force chain in different soil layers is similar, but the range of action is different. The contact force in silt layer is obviously larger than that in silty clay layer. The compressive stress of the soil at the end of the pile transfers radially with tensile stress. With the increase of pile diameter, the compressive stress and tensile stress in soil layer are gradually increasing, and the influence range of compressive stress and tensile stress is also gradually increasing. (4) The displacement of the soil below the pile tip is triangular, and the soil at the pile tip is squeezed around under the action of the pile tip. The influence range of particle displacement in each soil layer is different, and the influence range of particle displacement in silt layer is obviously smaller than that in silty clay layer
Experimental Research Based on the Optical Fiber Sensing Technology for a Jacked PHC Pipe Pile Penetration Process
The aim of this work is to explore the influence of the end resistance and shaft resistance regarding the mechanism for jacked pile penetration and the load-transfer rule during the penetration process. A full-scale field test was conducted in an actual project located in Dongying, Shandong Province, China. In this test, the axial strain experienced by two closed Prestressed High-strength Concrete (PHC) pipe piles during jacking into layered soil was monitored successfully using Fiber Bragg Grating (FBG) sensors mounted on the pile shaft. The experimental results show that FBG sensors have a good stability, strong antijamming performance, and can effectively monitor the pile stress. The variation law of the jacking force reflects the distribution of the soil layer, and the hardness of the soil layer at the pile end limits the pile force. When the pile end enters the silt layer from the clay layer, the jacking force and shaft resistance increase by 2.5 and 1.7, respectively. The shaft resistance accounted for 44.99% of the jacking force. The end resistance is affected by the mechanical properties of soil, and the end resistance of the silt layer is approximately twice that of the clay layer. The end resistance of the silt layer accounted for 59.84% of the jacking force. When the pile end enters the soft soil layer from the hard soil layer, the impact of the pile driving speed and the tangential force on the surface of the pile body must both be considered. During the pile penetration process, as the penetration depth increases, the radial stress on the pile side at a given depth is gradually released, while the shaft resistance at the pile side degrades significantly
A Model Test for the Influence of Lateral Pressure on Vertical Bearing Characteristics in Pile Jacking Process Based on Optical Sensors
Photoelectric integrated testing technology was used to study precast piles during pile jacking at the pile–soil interface considering the influence of the earth and pore water pressures on its vertical bearing performance. The low temperature sensitive fiber Bragg grating (FBG) strain sensors and miniature silicon piezoresistive sensors were implanted in the model pile to test the changes of earth pressure, pore water pressure and pile axial force of the jacked pile at the pile–soil interface, and the influence of lateral pressure on pile axial force was studied. The test results showed that the nylon rod is feasible as a model pile. The FBG strain sensor had a stable performance and monitored changes in the axial force of the model pile in real time. The miniature earth and pore water pressure sensors were small enough to avoid size effects and accurately measured changes in the earth and pore water pressures during the pile jacking process. During pile jacking, the lateral earth pressure increased gradually in depth, and the lateral earth pressure at the same depth tended to decrease at greater depths. Lateral pressures caused the axial force of the pile to increases by a factor of 1–2, where the maximum was 2.7. Therefore, the influence of the lateral pressure must be considered when studying the residual pile stress
Field Test of Excess Pore Water Pressure at Pile–Soil Interface Caused by PHC Pipe Pile Penetration Based on Silicon Piezoresistive Sensor
Prestressed high-strength concrete (PHC) pipe pile with the static press-in method has been widely used in recent years. The generation and dissipation of excess pore water pressure at the pile–soil interface during pile jacking have an important influence on the pile’s mechanical characteristics and bearing capacity. In addition, this can cause uncontrolled concrete damage. Monitoring the change in excess pore water pressure at the pile–soil interface during pile jacking is a plan that many researchers hope to implement. In this paper, field tests of two full-footjacked piles were carried out in a viscous soil foundation, the laws of generation and dissipation of excess pore water pressure at the pile–soil interface during pile jacking were monitored in real time, and the laws of variation in excess pore water pressure at the pile–soil interface with the burial depth and time were analyzed. As can be seen from the test results, the excess pore water pressure at the pile–soil interface increased to the peak and then began to decline, but the excess pore water pressure after the decline was still relatively large. Test pile S1 decreased from 201.4 to 86.3 kPa, while test pile S2 decreased from 374.1 to 114.3 kPa after pile jacking. The excess pore water pressure at the pile–soil interface rose first at the initial stage of consolidation and dissipated only after the hydraulic gradient between the pile–soil interface and the soil surrounding the pile disappeared. The dissipation degree of excess pore water pressure reached about 75–85%. The excess pore water pressure at the pile–soil interface increased with the increase in buried depth and finally tended to stabilize
Load-Bearing Characteristics of Large-Diameter Rock-Socketed Piles Based on Ultimate Load Tests
As part of a large converter project in Shandong Province, vertical static load tests and internal force tests were conducted on three large-diameter rock-socketed piles, their load transfer mechanism was clarified, and the ultimate side resistance and ultimate resistance performance characteristics of the rock-socketed sections were analyzed. The test results showed that the three test piles were damaged under maximum loading, the Q-s curve exhibited a steep drop, the pile compression was around 1.2 times the pile diameter, and the bearing capacity of a single pile did not meet the design requirements. The side and end resistances of the three test piles all reached their ultimate values, but the ultimate side resistance was lower than the lower limit of the recommended value in the current technical code for building pile foundations. The end resistance under maximum loading accounted for 38.4–53.8% of the peak load, which was relatively high. By comparing it with other studies, there was no significant correlation between the coefficient of rock ultimate side resistance of the rock-socketed segment and the pile diameter of the rock-socketed segment. However, the coefficient of ultimate resistance increased gradually with the pile diameter. However, the latter correlation was not significant when the pile diameter was less than 1000 mm
Numerical Simulation of Bearing Characteristics of Bored Piles in Mudstone Based on Zoning Assignment of Soil around Piles
This study conducts a field indoor simulation test, SEM observation, and penetration test to determine the bearing capacity of the dynamic driving pile in the mudstone foundation. It comprehensively analyzes the variation laws of structure and strength of mudstone around piles after piling. Indeed, the strength of mudstone structure is significantly reduced from outside to inside. Therefore, the numerical simulation of piles in mudstone should consider the actual characteristics of soil damage around piles. The strength of mudstone after pile driving damage is measured, and the scatter diagram depicting the relationship between mudstone strength and pile side distance is produced. Then, the best-fitting curve of the relationship between the strength ratio and the distance ratio of the simulated pile driving test is established by the nonlinear fitting of multiple curves. A numerical simulation method is proposed to consider the damaged area and parameters surrounding the pile. The range of soil damage caused by pile driving in the mudstone foundation is determined to be two times that of the pile diameter. The disturbance area is divided into four parts on average, and the width of each part is 0.5d. The simulation results are compared to the conventional approach of uniform parameter assignment to prove the rationality of the method
Numerical Simulation of Bearing Characteristics of Bored Piles in Mudstone Based on Zoning Assignment of Soil around Piles
This study conducts a field indoor simulation test, SEM observation, and penetration test to determine the bearing capacity of the dynamic driving pile in the mudstone foundation. It comprehensively analyzes the variation laws of structure and strength of mudstone around piles after piling. Indeed, the strength of mudstone structure is significantly reduced from outside to inside. Therefore, the numerical simulation of piles in mudstone should consider the actual characteristics of soil damage around piles. The strength of mudstone after pile driving damage is measured, and the scatter diagram depicting the relationship between mudstone strength and pile side distance is produced. Then, the best-fitting curve of the relationship between the strength ratio and the distance ratio of the simulated pile driving test is established by the nonlinear fitting of multiple curves. A numerical simulation method is proposed to consider the damaged area and parameters surrounding the pile. The range of soil damage caused by pile driving in the mudstone foundation is determined to be two times that of the pile diameter. The disturbance area is divided into four parts on average, and the width of each part is 0.5d. The simulation results are compared to the conventional approach of uniform parameter assignment to prove the rationality of the method