33 research outputs found

    Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo Chamber

    Full text link
    Neural networks often learn spurious correlations when exposed to biased training data, leading to poor performance on out-of-distribution data. A biased dataset can be divided, according to biased features, into bias-aligned samples (i.e., with biased features) and bias-conflicting samples (i.e., without biased features). Recent debiasing works typically assume that no bias label is available during the training phase, as obtaining such information is challenging and labor-intensive. Following this unsupervised assumption, existing methods usually train two models: a biased model specialized to learn biased features and a target model that uses information from the biased model for debiasing. This paper first presents experimental analyses revealing that the existing biased models overfit to bias-conflicting samples in the training data, which negatively impacts the debiasing performance of the target models. To address this issue, we propose a straightforward and effective method called Echoes, which trains a biased model and a target model with a different strategy. We construct an "echo chamber" environment by reducing the weights of samples which are misclassified by the biased model, to ensure the biased model fully learns the biased features without overfitting to the bias-conflicting samples. The biased model then assigns lower weights on the bias-conflicting samples. Subsequently, we use the inverse of the sample weights of the biased model for training the target model. Experiments show that our approach achieves superior debiasing results compared to the existing baselines on both synthetic and real-world datasets. Our code is available at https://github.com/isruihu/Echoes.Comment: Accepted by ACM Multimedia 202

    Fair Visual Recognition via Intervention with Proxy Features

    Full text link
    Deep learning models often learn to make predictions that rely on sensitive social attributes like gender and race, which poses significant fairness risks, especially in societal applications, e.g., hiring, banking, and criminal justice. Existing work tackles this issue by minimizing information about social attributes in models for debiasing. However, the high correlation between target task and social attributes makes bias mitigation incompatible with target task accuracy. Recalling that model bias arises because the learning of features in regard to bias attributes (i.e., bias features) helps target task optimization, we explore the following research question: \emph{Can we leverage proxy features to replace the role of bias feature in target task optimization for debiasing?} To this end, we propose \emph{Proxy Debiasing}, to first transfer the target task's learning of bias information from bias features to artificial proxy features, and then employ causal intervention to eliminate proxy features in inference. The key idea of \emph{Proxy Debiasing} is to design controllable proxy features to on one hand replace bias features in contributing to target task during the training stage, and on the other hand easily to be removed by intervention during the inference stage. This guarantees the elimination of bias features without affecting the target information, thus addressing the fairness-accuracy paradox in previous debiasing solutions. We apply \emph{Proxy Debiasing} to several benchmark datasets, and achieve significant improvements over the state-of-the-art debiasing methods in both of accuracy and fairness

    Introducing Foundation Models as Surrogate Models: Advancing Towards More Practical Adversarial Attacks

    Full text link
    Recently, the no-box adversarial attack, in which the attacker lacks access to the model's architecture, weights, and training data, become the most practical and challenging attack setup. However, there is an unawareness of the potential and flexibility inherent in the surrogate model selection process on no-box setting. Inspired by the burgeoning interest in utilizing foundational models to address downstream tasks, this paper adopts an innovative idea that 1) recasting adversarial attack as a downstream task. Specifically, image noise generation to meet the emerging trend and 2) introducing foundational models as surrogate models. Harnessing the concept of non-robust features, we elaborate on two guiding principles for surrogate model selection to explain why the foundational model is an optimal choice for this role. However, paradoxically, we observe that these foundational models underperform. Analyzing this unexpected behavior within the feature space, we attribute the lackluster performance of foundational models (e.g., CLIP) to their significant representational capacity and, conversely, their lack of discriminative prowess. To mitigate this issue, we propose the use of a margin-based loss strategy for the fine-tuning of foundational models on target images. The experimental results verify that our approach, which employs the basic Fast Gradient Sign Method (FGSM) attack algorithm, outstrips the performance of other, more convoluted algorithms. We conclude by advocating for the research community to consider surrogate models as crucial determinants in the effectiveness of adversarial attacks in no-box settings. The implications of our work bear relevance for improving the efficacy of such adversarial attacks and the overall robustness of AI systems

    Attention, Please! Adversarial Defense via Attention Rectification and Preservation

    Full text link
    This study provides a new understanding of the adversarial attack problem by examining the correlation between adversarial attack and visual attention change. In particular, we observed that: (1) images with incomplete attention regions are more vulnerable to adversarial attacks; and (2) successful adversarial attacks lead to deviated and scattered attention map. Accordingly, an attention-based adversarial defense framework is designed to simultaneously rectify the attention map for prediction and preserve the attention area between adversarial and original images. The problem of adding iteratively attacked samples is also discussed in the context of visual attention change. We hope the attention-related data analysis and defense solution in this study will shed some light on the mechanism behind the adversarial attack and also facilitate future adversarial defense/attack model design

    Benign Adversarial Attack: Tricking Models for Goodness

    Full text link
    In spite of the successful application in many fields, machine learning models today suffer from notorious problems like vulnerability to adversarial examples. Beyond falling into the cat-and-mouse game between adversarial attack and defense, this paper provides alternative perspective to consider adversarial example and explore whether we can exploit it in benign applications. We first attribute adversarial example to the human-model disparity on employing non-semantic features. While largely ignored in classical machine learning mechanisms, non-semantic feature enjoys three interesting characteristics as (1) exclusive to model, (2) critical to affect inference, and (3) utilizable as features. Inspired by this, we present brave new idea of benign adversarial attack to exploit adversarial examples for goodness in three directions: (1) adversarial Turing test, (2) rejecting malicious model application, and (3) adversarial data augmentation. Each direction is positioned with motivation elaboration, justification analysis and prototype applications to showcase its potential.Comment: ACM MM2022 Brave New Ide

    Towards Alleviating the Object Bias in Prompt Tuning-based Factual Knowledge Extraction

    Full text link
    Many works employed prompt tuning methods to automatically optimize prompt queries and extract the factual knowledge stored in Pretrained Language Models. In this paper, we observe that the optimized prompts, including discrete prompts and continuous prompts, exhibit undesirable object bias. To handle this problem, we propose a novel prompt tuning method called MeCoD. consisting of three modules: Prompt Encoder, Object Equalization and Biased Object Obstruction. Experimental results show that MeCoD can significantly reduce the object bias and at the same time improve accuracy of factual knowledge extraction

    Low-Mid Adversarial Perturbation against Unauthorized Face Recognition System

    Full text link
    In light of the growing concerns regarding the unauthorized use of facial recognition systems and its implications on individual privacy, the exploration of adversarial perturbations as a potential countermeasure has gained traction. However, challenges arise in effectively deploying this approach against unauthorized facial recognition systems due to the effects of JPEG compression on image distribution across the internet, which ultimately diminishes the efficacy of adversarial perturbations. Existing JPEG compression-resistant techniques struggle to strike a balance between resistance, transferability, and attack potency. To address these limitations, we propose a novel solution referred to as \emph{low frequency adversarial perturbation} (LFAP). This method conditions the source model to leverage low-frequency characteristics through adversarial training. To further enhance the performance, we introduce an improved \emph{low-mid frequency adversarial perturbation} (LMFAP) that incorporates mid-frequency components for an additive benefit. Our study encompasses a range of settings to replicate genuine application scenarios, including cross backbones, supervisory heads, training datasets, and testing datasets. Moreover, we evaluated our approaches on a commercial black-box API, \texttt{Face++}. The empirical results validate the cutting-edge performance achieved by our proposed solutions.Comment: published in Information Science
    corecore